
SUPPER, a “modern” stropping regime for

Algol 68
GNU68-2025-004 (draft)

by Jose E. Marchesi

Copyright c© 2025 Jose E. Marchesi.

You can redistribute and/or modify this document under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

Chapter 1: Informal Description 1

Foreword

The following specification has been released under the auspices of the GNU Algol 68 Working
Group, and has been scrutinized to ensure that

a. it is strictly upwards-compatible with Algol 68,

b. it is consistent with the philosophy and orthogonal framework of the language, and

c. it fills a clearly discernible gap in the expressive power of that language.

The source of this document can be found at https://git.sr.ht/~jemarch/gnu68.

The informal description of this proposal introduces the proposed new language features, pro-
viding a rationale and usage examples.

The formal definition of this proposal uses the existing formalism and conventions of the Stan-
dard Hardware Representation for Algol 68, and it is expressed as modifications to the Standard
Hardware Representation.

Finally, the implementation notes of this proposal describes a way in which the features added
by this specification can be implemented. No implementer should feel committed to do things
as described there; the same language facilities may well be implementable in other ways, more
suitable to specific implementations.

1 Informal Description

Representation languages and stropping

The Algol 68 algorithmic language establishes that certain source constructs, namely mode
indications and operator indications, consist in a sequence of bold letters and bold digits, known
as a bold word. In contrast, other constructs like identifiers, field selectors and labels are
composed of regular or non-bold letters and digits, known as a tag.

What is precisely a bold letter or digit, and how it differs from a non-bold letter or digit, is
not specified by the Report. This is no negligence, but a conscious effort at abstracting the
definition of the so-called strict language from its representation. This allows having several
different representations of the same language.

Some representations of Algol 68 are intended to be published in books, be it paper or electronic
devices, and be consumed by persons. These are called publication languages. In publication
languages bold letters and digits are typically represented by actual bold alphanumeric typo-
graphic marks, or sometimes underlined alphanumeric marks.

Other representations of Algol 68 are intended to be both produced and consumed by com-
puters. These are called hardware languages, and would very likely use some compact binary
representation in which the distinction between bold and regular letters and digits becomes
irrelevant.

Finally, we have representations of Algol 68 that are intended to be primarily written by pro-
grammers and to be primarily processed by programs such as compilers, static analyzers or
interpreters. These representations are called programming languages, and use some textual
representation that is easy to read, edited and parsed, consisting in a stream of characters
encoded in some character set.

Unfortunately, distinguishing a bold alphabet in programming languages is not easy, because
computer systems today do not yet provide readily usable and ergonomic bold or underline al-
phanumeric marks in text files, despite the existence of Unicode and very fancy and sophisticated
editing environments. The lack of appropriate input methods surely plays a role on this pitiful
state of affairs. Thus, the programming representation languages of Algol 68 should resort to

https://git.sr.ht/~jemarch/gnu68

Chapter 1: Informal Description 2

a technique known as stropping in order to differentiate bold letters and digits from non-bold
letters and digits. A particular set of rules specifying the representation of these characters is
known as a stropping regime.

There are three classical stropping regimes for Algol 68, which were standardized and specified
long ago in the Standard Hardware Representation normative document. These are POINT
stropping, RES stropping and UPPER stropping.

The following sections review these existing stropping regimes in a cursory way, to then introduce
a new stropping regime that is the subject of this specification. For more details on the standard
stropping regimes the reader is referred to the Standard Hardware Representation.

POINT stropping

POINT stropping is in a way the most fundamental of the three standard regimes. It was
designed to work in installations with limited character sets that provided just one alphabet,
usually printed in upper-case, a set of digits, and a very restricted set of other symbols.

.PROC RECSEL OUTPUT RECORDS = .VOID:

.BEGIN .BITS FLAGS

:= (INCLUDE DESCRIPTORS | REC F DESCRIPTOR | REC F NONE);

.RECRSET RES = REC DB QUERY (DB, RECUTL TYPE,

RECUTL QUICK, FLAGS);

.RECWRITER WRITER := REC WRITER FILE NEW (STDOUT);

SKIP COMMENTS .OF WRITER := .TRUE;

.IF RECUTL PRINT SEXPS

.THEN MODE .OF WRITER := REC WRITER SEXP .FI;

REC WRITE (WRITER, RES)

.END

Figure 1.1: Example of code in POINT stropping

In POINT stropping a bold word is represented by its constituent letters and digits preceded by
a point character. For example, the symbol bold begin symbol in the strict language, which
is represented as begin in the reference language, would be represented as .BEGIN in POINT
stropping.

More examples are summarized in the following table.

Strict language Reference language POINT stropping
true symbol true .TRUE

false symbol false .FALSE

integral symbol int .INT

completion symbol exit .EXIT

bold-letter-c-... crc32 .CRC32

In POINT stropping a tag is represented by writing its constituent non-bold letters and digits
in order. But they are organized in several taggles.

Each taggle is a sequence of one or more letters and digits, optionally followed by an underscore
character. For example, the tag PRINT is composed of a single taggle, but the tag PRINT_TABLE

is composed of a first taggle PRINT_ followed by a second taggle TABLE.

To improve readability it is possible to insert zero or more white space characters between the
taggles in a tag. Therefore, the tag PRINT_TABLE could have been written PRINT TABLE, or even
PRINT_ TABLE. This is the reason why Algol 68 identifiers, labels and field selectors can and do
usually feature white spaces in them.

It is important to note that both the trailing underscore characters in taggles and the white
spaces in a tag do not contribute anything to the denoted tag: these are just stropping arti-
facts aimed to improve readability. Therefore FOOBAR FOO BAR, FOO_BAR and FOO_BAR_ are all

Chapter 1: Informal Description 3

representations of the same tag, that represents the letter-f-letter-o-letter-o-letter-b-
letter-a-letter-r language construct.

See Figure 1.1 for an example of an Algol 68 procedure encoded in POINT stropping.

RES stropping

The early installations where Algol 68 ran not only featured a very restricted character set, but
also suffered from limited storage and complex to use and time consuming input methods such
as card punchers and readers. It was important for the representation of programs to be as
compact as possible.

The RES stropping regime was very likely introduced due to that reason. As its name implies,
it reduces the number of bold words that require being stropped by introducing reserved words,
which are the the bold words specified in the section 9.4.1 of the Report as a representation of
certain symbols, such as at, begin, if, int and many others.

PROC RECSEL OUTPUT RECORDS = VOID:

BEGIN BITS FLAGS

:= (INCLUDE DESCRIPTORS | REC F DESCRIPTOR | REC F NONE);

.RECRSET RES = REC DB QUERY (DB, RECUTL TYPE,

RECUTL QUICK, FLAGS);

.RECWRITER WRITER := REC WRITER FILE NEW (STDOUT);

SKIP COMMENTS OF WRITER := TRUE;

IF RECUTL PRINT SEXPS

THEN MODE .OF WRITER := REC WRITER SEXP FI;

REC WRITE (WRITER, RES)

END

Figure 1.2: Example of code in RES stropping

RES stropping encodes bold words and tags like POINT stropping, but if a bold word is a
reserved word then it can then be written without a preceding point, achieving this way a more
compact, and easier to read, representation for programs.

Introducing reserved words has the obvious disadvantage that some tags cannot be written the
obvious way due to the possibility of conflicts. For example, to represent a tag if it is not
possible to just write IF, because it conflicts with a reserved word, but this can be overcome
easily (if not very elegantly) by writing IF_ instead.

See Figure 1.2 for an example of an Algol 68 procedure encoded in RES stropping.

Note how user-defined mode indications an operator indications still require explicit stropping.

UPPER stropping

At some point computers added support for more than one alphabet by introducing character
sets with both upper and lower case letters, along with convenient ways to both input and
display these, namely a shift key and proper terminals.

Chapter 1: Informal Description 4

PROC recsel output records = VOID:

BEGIN BITS flags

:= (include descriptors | rec f descriptor | rec f none);

RECRSET res = rec db query (db, recutl type,

recutl quick, flags);

RECWRITER writer := rec writer file new (stdout);

skip comments of writer := TRUE;

IF recutl print sexps

THEN mode OF writer := rec writer sexp FI;

rec write (writer, res)

END

Figure 1.3: Example of code in UPPER stropping

In UPPER stropping the letters in bold word are represented by upper-case letters, whereas the
letters in tags are represented by lower-case letters.

The notions of upper- and lower-case are obviously not applicable to digits, but since the lan-
guage syntax assures that it is not possible to have a bold word that starts with a digit, digits
are considered to be bold by convention if they follow a bold letter or another bold digit.

See Figure 1.3 for an example of an Algol 68 procedure encoded in UPPER stropping.

Note how in this regime it is almost never necessary to introduce bold tags with points. All
in all, it looks much more natural to contemporary readers. UPPER stropping is in fact the
stropping regime of choice today. It is difficult to think of any reason why anyone would resort
to use POINT or RES stropping nowadays.

Bold taggles

In all three classical stropping regimes it is not possible to write white space characters between
the constituent letters and digits of a bold word. It is very common, however, for user-defined
mode indications and operator indications to contain several natural words, such as in TREENODE

or RECWRITER. This can be a little difficult to read.

The GNU extension GNU68-2025-002, “Bold taggles in Algol 68”, adds support in all the stan-
dard stropping regimes to use underscores in bold words. This is done by redefining bold words
to be based on taggles, much like tags.

PROC recsel output records = VOID:

BEGIN BITS flags

:= (include descriptors | rec f descriptor | rec f none);

REC_RSET res = rec db query (db, recutl type,

recutl quick, flags);

REC_WRITER writer := rec writer file new (stdout);

skip comments of writer := TRUE;

IF recutl print sexps

THEN mode OF writer := rec writer sexp FI;

rec write (writer, res)

END

Figure 1.4: Example of code in UPPER stropping with bold taggles

With this extension, the above mode indications could have been written like TREE_NODE an
REC_WRITER, improving readability.

See Figure 1.4 for an example of an Algol 68 procedure encoded in UPPER stropping with bold
taggles.

Chapter 1: Informal Description 5

SUPPER stropping

This proposal describes a new stropping regime that combines the advantages of the RES and the
UPPER regimes. The resulting representation of programs aims to be both more appealing to
contemporary programmers and also more convenient to be used in today’s computing systems.

On one hand, the RES stropping regime made it possible to avoid explicit stropping of a big
subset of all the bold words, namely the ones pertaining to the fixed set of “reserved words”.
However, both user-defined mode indications and operator indications still had to be stropped
explicitly, prefixing them with a dot character.

On the other hand, the UPPER stropping regime, cleverly exploiting dual-alphabet installations,
implemented the explicit stropping by having bold words encoded using upper-case letters and
tags encoded using lower-case letters.

Combining and adapting both approaches we can obtain a stropping regime in which explicit
stropping is reduced to the minimum necessary, i.e. user-defined mode and operator indications,
and in which explicit stropping is done in a way that looks more familiar to today’s programmers
and less heavy on upper-case letters than in UPPER stropping.

proc recsel_output_records = void:

begin bits flags

:= (include_descriptors | rec_f_descriptor | rec_f_none);

RecRset res = rec_db_query (db, recutl_type,

recutl_uick, flags);

RecWriter writer := rec_writer_file_new (stdout);

skip_comments of writer := true;

if recutl_print_sexps

then mode_ of writer := rec_writer_sexp fi;

rec_write (writer, res)

end

Figure 1.5: Example of code in SUPPER stropping

In the SUPPER stropping regime bold words are written by writing a sequence of one or more
taggles. Each taggle is written by writing a letter followed by zero or more other letters and
digits and is optionally followed by a trailing underscore character. The first letter in a bold
word shall be an upper-case letter. The rest of the letters in the bold word may be either upper-
or lower-case.

For example, RecRset, Rec_Rset and RECRset are all different ways to represent the same mode
indication. This allows to recreate popular naming conventions such as CamelCase.

As in the other stropping regimes, the casing of the letters and the underscore characters are
not really part of the mode or operator indication.

Operator indications are also bold words and are written in exactly the same way than mode
indications, but it is usually better to always use upper-case letters in operator indications. On
one side, it looks better, especially in the case of dyadic operators where the asymmetry of, for
example Equal would look odd, consider m1 Equal m2 as opposed to m1 EQUAL m2. On the other
side, tools like editors can make use of this convention in order to highlight operator indications
differently than mode indications.

In the SUPPER stropping regime tags are written by writing a sequence of one or more taggles.
Each taggle is written by writing a letter followed by zero or more other letters and digits and
is optionally followed by a trailing underscore character. All letters in a tag shall be lower-case
letters.

For example, the identifier list is represented by a single taggle, and it is composed by the
letters l, i, s and t, in order. In the jargon of the strict language we would spell the tag as
letter-l-letter-i-letter-s-letter-t.

Chapter 1: Informal Description 6

The label found_zero is represented by two taggles, found_ and zero, and it is composed by
the letters f, o, u, n, d, z, e, r and o, in order. In the jargon of the strict language we would spell
the tag as letter-f-letter-o-letter-u-letter-n -letter-d-letter-z-letter-e-letter-

r-letter-o.

The identifier crc_32 is likewise represented by two taggles, crc_ and 32. Note how the second
taggle contains only digits. In the jargon of the strict language we would spell the tag as
letter-c-letter-r-letter-c-digit-three-digit-two.

The underscore characters are not really part of the tag, but part of the stropping. For example,
both goto found_zero and goto foundzero jump to the same label.

See Figure 1.5 for an example of an Algol 68 procedure encoded in SUPPER stropping.

No white spaces in identifiers

SUPPER is the only Algol 68 stropping regime that doesn’t allow having typographical display
features (spaces, tabs and newline characters) between the taggles conforming a tag. In other
words, it is not allowed to have white spaces as part of identifiers.

This is a shame, but there are two main reasons why it was decided to proceed like this.

First and most importantly, the SUPPER stropping regime is based on reserved words, which are
mapped from the representation specified for the symbols of the language that are represented
by bold words in the reference language.

The reference language of Algol 68 was designed before the Standard Hardware Representation
introduced the RES stropping regime. Likely this is the reason why it specifies so many and so
short symbols: the authors assumed that tags would always live in a different name space than
bold words.

With reserved words like to and in, it becomes very difficult to separate identifier taggles
with white spaces without bumping into conflicts. Consider for example the not at all unlikely
procedure name checked real to int. This identifier would be not legal, because the three last
taggles conflict with the the standard mode real, the syntactic bold word to and the standard
mode int, respectively.

Such conflicts could be avoided by making the offending taggles to be adjacent to underscores,
but then who would want to write identifiers like checked real_ to_ int_ or checked real_to_

int? It is much simpler to just mandate for such tags to be written as checked_real_to_int.
This avoids any possibility of conflict since all the taggles are adjacent to an underscore and
therefore cannot collide with reserved words. Also, the risk of programs breaking in the future
due to new reserved words getting added to the language gets dramatically reduced.

The second reason is that the notion of allowing blanks to be freely interjected in user-defined
identifiers is alien to most if not all programming languages widely used today. It is, unfortu-
nately, an eccentricity, even if a beautiful one, that makes it difficult to leverage existing tools
such as editors, code indentation engines, and basically any program that makes assumptions
on the general form of programs. For example, convincing a programming editor or IDE that
a single identifier may span for more than one logical line in the source file may prove quite
challenging and frustrating.

Conformance

This proposal conforms to the requirements specified in the appendix B.3 of the Standard
Hardware Representation:

B.3 Other Stropping Regimes.

For compatibility with existing installation practice,

7

implementations may implement stropping regimes in addition to those

provided by the standard. However, such additional regimes should be

invoked by pragmat-items distinct from those in *3.5. All

modifications to the defined regimes -- including extensions -- should

be avoided because they would inhibit error detection and decrease

portability.

2 Formal Description

This extension adds a new stropping regime to the Standard Hardware Representation, so a new
pragmat-item shall be invented.

3.5

... of which there are four. A new regime is invoked by a pragmat

containing one of the pragmat-items POINT, UPPER, RES or SUPPER, and

takes effect following the closing pragmat symbol.

The new stropping regime is then described in its own section, as follows.

3.5.4 SUPPER Stropping

Bold words.

- A bold word is written as a sequence of {one or more} taggles

whose worthy letters and digits correspond, in order, to the bold

faced letters and digits in the word.

- A bold word must start with an upper-case letter. Upper- and

lower-case letters may be otherwise intermixed in a bold word.

- Upper-case letters may be written only in bold words and

character-glyphs.

Tags.

- A tag is written as a sequence of {one or more} taggles. The

taggles cannot be separated by typographical display features.

- A taggle is written by writing, in order, the corresponding

worthy letters and digits optionally followed by an underscore.

- A taggle must be adjacent to an underscore if its letters and

digits correspond, in order, to those of a reserved word.

- If a taggle does not end with an underscore, it must be followed

by a disjunctor.

{Examples:

Program: PR SUPPER PR begin real x; x := x - 1 end

Bold: begin, AMode, AmOdE, AMODE, Oper, OPER

Plain: begin_, end_of_file, end_of_file_, xl,

x_l,

Error: Some_Mode, end of file, end____of__file,

end_of_file__ }

3 Implementation Notes

Stropping is to be implemented purely at the lexical level and it must not have any impact on
the letters and digits that constitute bold words and tags. Therefore, in principle, of all the

Chapter 3: Implementation Notes 8

components of a compiler or interpreter only the lexical analyzer (or tokenizer) shall concern
itself with the stropping regime.

