ELF pickles for GNU poke

by Jose E. Marchesi

Copyright (© 2024 Jose E. Marchesi.

You can redistribute it and/or modify this manual under the terms of the GNU
General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

Table of Contents

1

Introduction 2
1.1 Who is this manual for?. 2
1.2 Approach used to describe Poke data structures.............. i, 2

Installation........ 3
2.1 Build Requirements 3
2.2 Fetching and unpacking poke-elf. 3
2.3 Configuring the SOUrCESt e 3
2.4 Building and checking. ... 3
2.5 Installing . ..o 4

Pickles Overview 5

ELF Configurations 6
4.1 ELF Configuration Parameters......... ... i 6
4.2 The ELF Configuration Registryoouuiii i e 6
4.3 Enumeration configuration parameterst i 6
4.4 Mask configuration parameters.ttt 7
4.5 Configuration parameters used by this pickle L. 8
4.6 Getting printed representations of configuration parameters 10
4.7 Checking valid configuration parameters.c..o.iiiiiiiiiiii i 10
4.8 Using configuration parameters in types. ..., 10
4.9 Debugging the registry. ... 11

ELF Basic Types. ..., 12

ELF File 13
6.1 OVEIVIOW . oottt ittt e 13
0.2 Faelds . ..ot 13
6.3 Methods. ... 13

6.3.1 Methods related to Sectionso 14
6.3.2 Methods related to string tables......... 14
6.3.3 Methods related to section groups.............ccooiiiiiiiiiiiiiii i 15
6.3.4 Methods related to loaded contents........... i 15
0.4 USaZ . vttt e 15
6.4.1 Working with sections...... ... i 16
6.4.2 Working with string tables....... ... i 16
6.4.3 Working with section groups.......... ..o 16

ELF Header 17
8 T O 177 7 1 2 PP 17
7.2 FHelds .ot 17

T3 U e vttt ettt e 19

8 ELF Section Headers 20
Bl OVOTVIOW . oottt et e 20
8.2 FHeldS . oottt 20

9 ELF Program Headers........... 23
0.1 OVOTVIOW oottt e e 23
0.2 FHelds . . oo 23

10 ELF Symbols...... 25
101 OVEIVIEW . . ottt et e e e e e 25
10.2 FHELAS « oo et 25

11 ELF NoOtesS. ... s 28
111 OVeIVIOW oo e ettt e e e 28
11.2 Felds .o 28

12 ELF Relocations........... .. . 29
12,1 OV VICW .« v ottt e e e e 29
12.2 0 FHElAS « oo v 30

13 ELF Dynamic Info.......... 31

14 ELF Machines. s 32

15 ELF OSeS ..o 33

Appendix A Indices.......... 34

AT Concept INdex ..o 34

GNU poke is an interactive, extensible editor for binary data. Not limited to editing basic
entities such as bits and bytes, it provides a full-fledged procedural, interactive programming
language designed to describe data structures and to operate on them.

This manual explains how to use the ELF pickles distributed at https://jemarch.net/
poke-elf.

https://jemarch.net/poke-elf
https://jemarch.net/poke-elf

1 Introduction

This manual documents the pickles shipped in the poke-elf package. It not only describes the
data structures implemented in these pickles, but also shows examples of techniques to how to
make best use of them.

1.1 Who is this manual for?

This manual assumes that the reader is familiar with both the poke program and the Poke
programming language.

1.2 Approach used to describe Poke data structures

When describing Poke types (such as for example E1£64_Chdr) this manual takes the approach
of first showing a simplified or stripped-out version of the type, like this:

type E1f64_Chdr =
struct
{
Elf_Word ch_type;
Elf_Word ch_reserved;
offset<E1lf64_Xword,B> ch_size;
offset<E1f64_Xword,B> ch_addralign;
};
Generally speaking, these stripped versions of the type do not contain comments, constraints,
variables, functions nor methods. However, there are exceptions to this rule in the particular
cases where we want to draw your attention to some particular aspect involving some constraint,
method, etc.
Following the simplified version of the type, its fields get discussed in detail. Then, the overall
data structure gets discussed, and examples on how to use it to poke at data are shown. Finally,
the methods offered by the type, if any, are described in detail along with usage examples.

2 Installation

Welcome! This section should get you up and running to enjoy poking at nasty ELF data in no
time.

2.1 Build Requirements

These are the build requirements if you are building from a distribution source tarball:

— A recent enough version of GNU poke is necessary in order to run the test suite of this
package. This is checked at configure time. If no suitable poke is found, the test suite is
not run.

2.2 Fetching and unpacking poke-elf

The first step to install poke-elf is to fetch a copy of it. Like all GNU poke pickles, poke-elf
releases are distributed as source tarballs:

$ wget https://ftp.gnu.org/gnu/poke/poke-elf-version.tar.gz

Where version is the version you want to install. Next step is to untar the tarball. It will expand
to a poke-elf-version directory:

$ tar xvf poke-elf-version.tar.gz
$ cd poke-elf-version/

2.3 Configuring the sources

It is time now to configure the sources. You do that by invoking the configure script that is
in the root directory of the distribution.

$./configure

By default the configure script will configure the source in order to be installed under
/usr/local, which is a system location. If you want to install the pickles in some other lo-
cation, you can pass a ——-prefix command line option to the script. For example:

$./configure --prefix=$HOME/.poke.d

Now that the sources are configured, it is time to build them and check the distribution.

2.4 Building and checking

$ make
$ make check

There should be no errors. If any of the tests fail, please re-run make check but this time
enabling verbose output:

$ make check VERBOSE=1

And file a bug report at https://sourceware.org/bugilla including both the contents of your
config.log file and the output you get on the terminal when you run make check. Please file
the bug report for product “poke” and component “elf-pickle”.

Note that the testsuite will only be executed if a recent enough poke was found during configure.

https://sourceware.org/bugilla

Chapter 2: Installation

2.5 Installing
The last step is to install the pickles in your system:

$ make install
Note that the installed poke will find the installed pickles only if these are installed under the
same prefix than poke. If you install the pickles in some other location (like under ~/.poke.d
for example, you will have to set the environment variable POKE_LOAD_PATH. Just put something
like this in your .bashrc or similar file:

export POKE_LOAD_PATH=$HOME/.poke.d
And that’s it! Now run poke, load the pickles and enjoy!

$ poke /bin/ls
(poke) load elf
(poke) var elf = E1f64_File @ O#B

3 Pickles Overview

This chapter provides an high-level overview of all the pickles distributed by this package. These
are all developed in subsequent chapters.

elf.pk This is the main ELF pickle, and the one that is intended to be loaded by the user.
It does little more than loading the rest of the elf-* pickles, but it does it in the
right order!

elf-build.pk
This pickle contains information generating during building the poke-elf package.
In particular, the version.

elf-config.pk
This pickle implements the ELF configuration registry, which is used by the ELF
pickles in order to maintain a database of the very varied set of different configura-
tion parameters supported by the ELF specification: machine types, section types,
segment types, file flags, etc. See Chapter 4 [ELF Configurations], page 6.

elf-common.pk
This pickle contains definitions which are common to both 32-bit and 64-bit ELF.
It also registers configuration parameters that are common to all machine types.

elf-os-o0s.pk
These pickles contain definitions and configuration parameters for the different op-
erating systems supported in the ELF specification. For example, elf-os-gnu.pk
covers the GNU extensions documented in the GNU gabi extensions®.

elf-mach-aarch64.pk

elf-mach-arm.pk

elf-mach-bpf.pk

elf-mach-mips.pk

elf-mach-riscv.pk

elf-mach-sparc.pk

elf-mach-x86-64.pk
These pickles contain definitions and configuration parameters for the different ma-
chine types supported in the ELF specification.

elf-32.pk
This pickle contains definitions for 32-bit ELF files. Among these is the definition
of the E1£32_File type, which corresponds to an entire ELF-32 file.

elf-64.pk
This pickle contains definitions for 64-bit ELF files. Among these is the definition
of the E1f64_File type, which corresponds to an entire ELF-64 file.

! https://sourceware.org/gnu-gabi

https://sourceware.org/gnu-gabi

4 ELF Configurations

4.1 ELF Configuration Parameters

The ELF object format specification, unlike most (all?) its predecessors, was designed with the
goal of being extremely flexible and extensible, in order to cover the needs of any conceivable
hardware architecture and operating system.

In order to achieve this goal, many of the entities that appear in ELF files, such as sections,
symbols, or segments, are pretty generic and configurable. For example, consider the following
(simplified) definition of an ELF64 relocation:

type E1f64_RellInfo =
struct

{
uint<32> r_sym;
uint<32> r_type;
+
Where r_type contains a code identifying the type of the relocation. The ELF specification
itself doesn’t say what values may go in r_type; it is the different supplements for particular
architectures (or machines in ELF parlance) that list the relocation types used in their machines.

Relocation types, understood as the set of valid codes to be set in a r_type field, is just one
example of what in poke-elf we call an ELF configuration parameter.

There are many other configuration parameters: section flags, section types, symbol types,
and a large etc. They are often dependent of particular machines and OSes, and there can be
many of them: there are often literally hundreds of different relocation types defined by some
particular architecture.

4.2 The ELF Configuration Registry

As the different ELF pickles get loaded, they populate a registry of configuration parameters.
This registry is a value of the struct type E1f_Config that is defined in elf-config.pk, and is
stored in the global variable elf_config.
There are two kinds of configuration parameters: enumerations and masks. The registry contains
several collections of them:

— One set of common enumerations.

— One set of common masks.

— One set of enumerations per machine type.

— One set of masks per machine type.

4.3 Enumeration configuration parameters

Enumeration configuration parameters, or enums for short, are sets of numbers or codes. Each
entry in an enum represents an alternative value for some parameter. New enum entries are
constructed using the E1f_Config_UInt struct type:

type E1f_Config Ulnt =
struct
{
uint<32> value;
string name;
string doc;

};

Chapter 4: ELF Configurations 7

Where name is a short and descriptive name for the parameter value and doc is an English
statement describing the meaning of this particular value.

For example, this is how the definition of a X86_64 relocation type looks like:

Elf_Config UInt { value = ELF_R_X86_64_PC32, name = "pc32",
doc = "PC relative 32 bit signed." }

Adding new enum configuration parameters to the registry is done by using the add_enum
method of E1f_Config:

method add_enum = (int<32> machine = -1,
string class = "",
Elf_Config UInt[] entries = Elf_Config UInt[]()) void:

Where machine is either -1 or an ELF machine code (likely one of the ELF_EM_x values defined
in elf-common.pk). If the former, the new parameter is added to the set of common enums.
Otherwise it is added to the set of enums defined for the specified machine type. Finally, entries
is an array of the different values this parameter may adopt.

The class argument is a string that gives a name to the new configuration parameter. These
have names like reloc-types or file-classes. Our ELF pickles use a definite set of names,
documented below, but nothing prevents you to use your own.

This is how we would add a couple of common relocation types to the register (note the
actual ELF specification has none of these, they are all machine-specific):

elf_config.add_enum
:class "reloc-types"
rentries [Elf_Config UInt { value = O, name = "null reloc" },
Elf_Config UInt { value = 1, name = "PC-relative 16-bit displacement." }];

And this is how we would add relocation types for the X86_64 architecture:

elf_config.add_enum
:class "relocation_types"
rentries [Elf_Config UInt { value = ELF_R_X86_64_PC32, name = "pc32",
doc = "PC relative 32 bit signed." },
E1f_Config UInt { value = ELF_R_X86_64_GO0T32, name = "got32",
doc = "32 bit GOT entry." },
1

4.4 Mask configuration parameters

Mask configuration parameters are sets of bit-masks. Each entry is an unsigned number deter-
mining some valid configuration of bits for the value of some parameter. New mask entries are
constructed using the E1f_Config_Mask type:

type E1f_Config_Mask =
struct

{
uint<64> value;
string name;
string doc;
};
Where name is a short an descriptive name summarizing the quality of the bit of bits set in
value, and doc is an English statement describing the meaning of these particular bits.
For example, this is how the definition of an ARM section flag looks like:

E1f_Config _Mask { value = ELF_SHF_ARM_PURECODE, name = "purecode",
doc = "Section contains only code and no data." }

Chapter 4: ELF Configurations 8

Adding new mask configuration parameters to the registry is done by using the add_mask
method of E1f_Config:

method add_mask = (int<32> machine = -1,
string class = "",
E1f_Config Mask[] entries = E1f_Config Mask[]()) void:

Where machine is either -1 or an ELF machine code. If the former, the new mask is added to
the set of common masks. Otherwise it is added to the set of masks defined for the specified
machine type. Finally, entries is an array of the different sub-masks this parameter may adopt.

As with enums, the class argument is a string that gives a name to the new configuration
parameter. Masks have names like "section-flags" or "segment-flags".

This is how we would register a couple of common section flags:

elf_config.add_mask
:class "section-flags"
tentries [Elf_Config_Mask { value
Elf_Config Mask { value

ELF_SHF_WRITE, name
ELF_SHF_ALLOC, name

And this is how we would register section flags for the ARM architecture:

"write" },
"alloc" }];

elf_config.add_mask
:machine ELF_EM_ARM
:class "section-flags"
rentries [Elf_Config_Mask { value = ELF_SHF_ARM_ENTRYSECT, name = "entrysect",

doc = "Section contains an entry point." },
Elf_Config Mask { value = ELF_SHF_ARM_PURECODE, name = "purecode",
doc = "Section contains only code and no data." },

1

4.5 Configuration parameters used by this pickle

As we have mentioned, it is possible to register new configuration parameters in the registry,
with arbitrary names. This is certainly useful to the happy poker that is working on some weird
ELF extension, or simply playing around.

However, the set of elf-*pk pickles are designed to work with a closed set of configuration
parameters. Having extra parameters in the registry is perfectly ok, but if you mess with the
parameters below, you are gonna have to face the consequences :)

Note however that adding support for a new machine type or a new operating system
shouldn’t require extending the set of configuration parameters: just to add new values to
them.

The enum configuration parameters used by this pickle are:

elf-machines
Valid values in e_machine fields.

file-osabis

Valid values in ei_osabi fields.
file-encodings

Valid values in ei_data fields.
file-classes

Valid values in ei_class fields.
file-types

Valid values in e_type fields.

Chapter 4: ELF Configurations

section-types
Valid values in sh_type fields.

section-indices
Indices in the file section header table with special meanings.

section-other
Valid values in sh_other fields.

segment-types
Valid values in p_type fields.

reloc-types
Valid values in r_type fields.

dynamic-tag-types
Valid values in d_tag fields.

symbol-types
Valid values in st_type fields.

symbol-bindings
Valid values in st_bind fields.

symbol-visibilities
Valid values in st_visibility fields.

note-tags
Valid tags for notes stored in notes sections.

gnu-properties
Valid values for pr_type fields in GNU properties.

The mask configuration parameters used by this pickle are:

file-flags
Valid bits in e_flags fields.

section-flags
Valid bits in sh_flags fields.

segment-flags
Valid bits in p_flags fields.

The architecture-specific enum configuration parameters used by this pickle are:

mips-abis
Valid values in the ELF_EF_MIPS_ABI bits of e_flags in MIPS machines.

mips-machines
Valid values in the ELF_EF_MIPS_MACH bits of e_flags in MIPS machines.

mips—architectures
Valid values in the ELF_EF_MIPS_ARCH bits of eflags in MIPS machines.

The architecture-specific mask configuration parameters used by this pickle are:

mips-1-flags
Valid bits in 1_flags fields.

Chapter 4: ELF Configurations 10

4.6 Getting printed representations of configuration parameters

The format_enum and format_mask methods of E1f_Config return the user-friendly printed
representation of the given alternative value or bitmap. They have the following prototypes:

method format_enum = (string class, uint<16> machine,
uint<32> value) string:
(string class, uint<16> machine,
uint<64> value) string:

method format_mask

The printed representation of an enum is simply the name that was provided when registering
it. For example:

(poke) elf_config.format_enum ("reloc-types", ELF_EM_X86_64, 2)
llpC32 n
The printed representation of a mask is a sequence of the names given to the different bitmaps
at registration time, separated by comma (,) characters. For example:

(poke) elf_config.format_mask ("section-flags", ELF_EM_X86_64, 0xf00)
"os-nonconforming,group,tls,compressed"

4.7 Checking valid configuration parameters

The check_enum and check_mask methods of E1f_Config check whether the given values are
valid for some particular configuration parameter. They have the following prototypes:
method check_enum = (string class, uint<16> machine,
uint<32> value) int<32>:
method check_mask = (string class, uint<16> machine,
uint<64> value) int<32>:

Where machine specifies the machine type and class the name of the configuration parameter.
They determe wether value is a valid class.
For example, this is how we would check whether 57 identifies a valid relocation type in
RISCV:
(poke) elf_config.check_enum ("reloc-types", ELF_EM_RISCV, 57)
0

Turns out it doesn’t! :D

4.8 Using configuration parameters in types

The formatting and checking methods described above are mainly used in the ELF pickles in
order to implement pretty-printers and data integrity constraints in the several ELF structures
holding such values.

For example:
type E1f64_Shdr =

struct

{
Elf_Word sh_type : elf_config.check_enum ("section-types", elf_mach, sh_type);
E1f64_Xword sh_flags : elf_config.check_mask ("section-flags", elf_mach, sh_flags)

[...]

method _print_sh_type = void:
{

printf "#<Ys>", elf_config.format_enum ("section—types", elf_mach, sh_type);

Chapter 4: ELF Configurations 11

}
method _print_sh_flags = void:
{
printf "#<Js>", elf_config.format_mask ("section-flags", elf_mach, sh_flags);
}

+
However, they are also very useful to the user while poking at existing data (“if these bytes
were to be interpreted as ELF section flags in some given arch, which ones they would be?”),
composing new data and also when generating reports and statistics.

4.9 Debugging the registry
If you want to get a trace of the configuration parameters as they are being added to the registry,
simply set the elf_config_debug variable to a non zero value and reload the ELF pickles:

(poke) elf_config_debug = 1
(poke) load elf

12

5 ELF Basic Types

The encoding of the simple fields in the ELF data structures is abstracted in the following Poke
types.
Types used in both 32-bit and 64-bit ELF:

type E1f_Half = uint<16>
An ELF unsigned medium integer.

type E1f_Word = uint<32>
An ELF unsigned integer.

type E1f_Sword = int<32>
An ELF signed integer.

Types used in 32-bit ELF only:

type E1£32_Addr = offset<uint<32>,B>
An ELF unsigned program address.

type E1£32_0ff = offset<uint<32>,B>
An ELF unsigned file offset.

Types used in 64-bit ELF only:

type E1£64_Xword = uint<64>
An ELF unsigned long integer.

type E1£64_Sxword = int<64>
An ELF signed long integer.

type E1f64_Addr = offset<uint<64>,B>
An ELF unsigned program address.

type E1f64_0ff = offset,uint<64>,B>
And ELF unsigned file offset.

6 ELF File

13

The Poke types provided to denote ELF64 and ELF32 files are E1f64_File and E1f32_File
respectively.

6.1

Overview

type E1f32_File =
struct

{
E1f32_Ehdr ehdr;

if (ehdr.e_shnum > 0)
E1f32_Shdr [ehdr.e_shnum] shdr

if (ehdr.e_phnum > 0)
E1f32_Phdr[ehdr.e_phnum] phdr
3

type E1f64_File =
struct

{

ehdr.e_shoff;

ehdr.e_phoff;

E1f64_Ehdr ehdr;

if (ehdr.e_shnum > 0)
E1f64_Shdr[ehdr.e_shnum] shdr ehdr.e_shoff;

if (ehdr.e_phnum > 0)
E1f64_Phdr[ehdr.e_phnum] phdr ehdr.e_phoff;

6.2 Fields

ehdr

shdr

phdr

Is the header of the ELF file, of type E1f64_File. This always exists and is always
located at the beginning of the ELF file.

Is the optional section header table of the ELF file. This is an optional field that is
an array of E1f64_Shdr (or E1£32_Shdr) values, describing the ELF sections present
in the file.

This table, if it exists, can be located anywhere in the ELF file. The ELF header
determines the size and location of the table.

Is the optional program section header table of the ELF file. This is an optional field
that is an array of E1f64_Phdr (or E1£32_Phdr) describing ELF segments present
in the file.

This table, if it exists, can be located anywhere in the ELF file. The ELF header
determines the size and location of the table.

6.3 Methods

Chapter 6: ELF File 14

6.3.1 Methods related to sections

File_E1f64.section_name_p = (string name) int<32>

File_E1f32.section_name_p = (string name) int<32>
Given a section name, return whether a section with that name exists in the ELF
file.

File_E1f64.get_sections_by_name = (string name) E1£64_Shdr[]
File_E1f32.get_sections_by_name = (string name) E1£f32_Shdr[]
Given the name of a section, return an array of section headers in the ELF file
having that name. The returned array may of course be empty.

For example, this is how you can get an array of all the sections in the file with
name .text:

(poke) elf.get_sections_by_name (".text")

[E1£64_Shdr {
sh_name=141U#B,
sh_type=#<progbits>,
sh_flags=#<alloc,execinstr>,
sh_addr=18144UL#B,
sh_offset=18144UL#B,
sh_size=80574UL#B,
sh_1ink=0U,
sh_info=0U,
sh_addralign=16UL,
sh_entsize=0UL#B

}

File_E1f64.get_sections_by_type = (E1f_Word stype) E1£64_Shdr[]
File_E1f32.get_sections_by_type = (E1f_Word stype) E1£32_Shdr[]
Given a section type (one of the ELF_SHT_* value) return an array of section headers
in the ELF file with that type. The returned array may be empty.

6.3.2 Methods related to string tables

E1f64_File.get_section_name = (offset<Elf_Word,B> offset) string
E1f32_File.get_section_name = (offset<Elf_Word,B> offset) string
Given an offset into the ELF file’s section string table, return the string starting at
that offset. This uses one particular string table that is linked from the ELF header
via the e_shstrndx field.

For example, this is how we would print the name of the second section in an ELF
file!:

(poke) elf.get_section_name (elf.shdr[1].sh_name)

".interp"

E1f64_File.get_symbol_name = (E1f64_Shdr symtab, offset<Elf_Word,B> offset)
string
E1f64_File.get_symbol_name = (E1f32_Shdr symtab, offset<Elf_Word,B> offset)
string
Given the section header of a section that contains a symbol table symtab, and an
offset, return the corresponding string stored at the symbol table associated string
table.

1 The first section in an ELF file is the “null” section and has an empty name.

Chapter 6: ELF File 15

E1f64_File.get_string = (offset<Elf_Word,B> offset) string
E1£f32_File.get_string = (offset<Elf_Word,B> offset) string

Given an offset, return the string stored at that offset in the “default” string table
of the ELF file.

The default string table is contained in a section named .strtab. If such a section
doesn’t exist, or if it exists but it doesn’t contain a string table, then this function
raises E_inval.

6.3.3 Methods related to section groups

E1f64_File.get_group_signature = (E1£64_Shdr section) string
E1f32_File.get_group_signature = (E1£32_Shdr section) string
Return the signature corresponding to a given group section, characterized by its
entry in the section header table. If the given section header doesn’t correspond to
a group section then raise E_inval.

E1f64_File.get_group_signatures = string[]

E1f32_File.get_group_signatures = string[]
Return an array of strings with the signatures of the section groups present in this
ELF file.

E1f64_File.get_section_group = (string name) E1f64_Shdr[]
E1f32_File.get_section_group = (string name) E1£32_Shdr[]
Given the name of a section group, return an array with the section headers cor-
responding to all the sections in that group. If the given name doesn’t identify a
section group in the ELF file then return an empty array.

6.3.4 Methods related to loaded contents

E1f64_File.get_load_base = E1f64_Addr
Determine the base where the contents of the ELF file are loaded, understood as the
lower virtual address where segments get loaded. If there are no loadable segments
in the ELF file then this method raises E_inval.

E1f64_File.vaddr_to_sec = (E1f64_Addr vaddr) E1f64_Addr
Given a virtual address, return the index in the section header table of the section
whose loaded contents cover the given address. If no such section is found this
method returns -1.
Consider for example a relocation which points to some content that is stored in some
section in a loadable ELF file. The corresponding r_offset field in the relocation
will not contain a file offset, but a loaded address. This method can be then used
to determine the section the relocation is applied to.

E1f64_File.vaddr_to_file_offset = (E1f64_Addr vaddr) E1f64_Addr
If some of the contents of the file sections are to be loaded in vaddr, this method
returns the file offset to these contents.

6.4 Usage

Poking at an ELF file usually starts by opening some IO space and mapping a E1f64_File (or
E1f32_File):

(poke) .file /bin/1ls

(poke) var elf = E1f64_File @ O#B
Once mapped, we can access any of the above fields. For example, let’s see how many sections
and segments this file has:

(poke) elf.shdr’length

Chapter 6: ELF File 16

30UL
(poke) elf.phdr’length
11UL

In case the file didn’t have a program header table, which always happens with object files, we
would have got an exception if we tried to access the absent field phdr:

$ echo ’’ | gcc -c -xc -o foo.o -

$ poke foo.o

(poke) load elf

(poke) (E1f64_File @ O#B).phdr
unhandled invalid element exception

6.4.1 Working with sections

Unlike in older object formats (like a.out for example) the sections present in ELF files are not
fixed nor they have fixed pre-defined names: there can be any number of them (including none)
and they can have any arbitrary name. Also, more than one section in the file can have the
same name.

So when it comes to ELF files, the process to determine whether one or more section with
a given name exists in the file is a bit laborious: one has to traverse the section header table,
fetch the section names from whatever appropriate string table, etc.

The following methods, that you can use in your own pickles, scripts, or at the prompt, are
handy to look at particular sections in the file.

6.4.2 Working with string tables

The names of several entities in ELF files are stored in different string table, which are themselves
stored in different sections. There are different rules establishing where exactly the name of
certain entities (sections, symbols, ...) are to be found.

These rules are not trivial and require traversing several data structures. Therefore the
E1f64_File (and File32_File) type provides several methods in order to easily determine the
name of these entities.

6.4.3 Working with section groups

ELF supports grouping several sections in a section group. This is useful when several sections
have to go together, because they rely on each other somehow.

A section of type SHT_GROUP defines a section group. Groups are univocally identified by
a group signature, which is the name associated with a symbol that is stored in a particular
symbol table, linked from the section header of the group defining section.

Again, it is not exactly trivial to determine, for example, which of the sections in the ELF
file pertain to which group. Therefore the pickle provides the methods below:

17

7 ELF Header

The ELF headers are always to be found at the beginning of an ELF file. However, it is also
common to find ELF data embedded in other container formats (such as an ELF section!) and
sometimes ELF headers are used to describe non-conformance ELF contents. Therefore poking
at headers directly is not that uncommon.

The Poke types provided to denote ELF headers are E1f64_Ehdr and E1£32_Ehdr, for 64-bit
and 32-bit ELF files respectively.

7.1 Overview

type E1f32_Ehdr =

struct

{
Elf_Ident e_ident;
E1f_Half e_type;
Elf_Half e_machine;
Elf_Word e_version = ELF_EV_CURRENT;
E1£32_Addr e_entry;
E1£32_0ff e_phoff;
E1£f32_0ff e_shoff;
Elf_Word e_flags;
offset<E1lf_Half ,B> e_ehsize;
offset<Elf_Half,B> e_phentsize;
E1f_Half e_phnum;
offset<Elf_Half,B> e_shentsize;
Elf_Half e_shnum;
E1f_Half e_shstrndx;

};

type E1f64_Ehdr =

struct

{
Elf_Ident e_ident;
E1lf_Half e_type;
Elf_Half e_machine;
Elf_Word e_version = ELF_EV_CURRENT;
E1f64_Addr e_entry;
E1f64_0ff e_phoff;
E1f64_0ff e_shoff;
Elf_Word e_flags;
offset<Elf_Half,B> e_ehsize;
offset<Elf_Half,B> e_phentsize;
E1f_Half e_phnum;
offset<E1lf_Half,B> e_shentsize;
Elf_Half e_shnum;
Elf_Half e_shstrndx;

};

7.2 Fields

e_ident Is a field that describes the encoding of the contents that follow in the ELF file.
The data in this field is encoded in a clever way that only requires to read the

Chapter 7: ELF Header 18

e_type

information byte by byte. This is necessary, because part of the information stored
in e_ident is precisely the encoding used by the data in the ELF file:

type E1f_Ident =
struct

{

};
Where:
ei_mag

ei_class

ei_data

byte[4] ei_mag == [0x7fUB, ’E’, °L’, °F’];
byte ei_class;

byte ei_data;

byte ei_version;

byte ei_osabi;

byte ei_abiversion;

byte[7] ei_pad;

Is the magic number identifying the ELF file. It is always 0x7F.

Determines the class of the ELF file. This can be one of ELF_CLASS_
NONE, ELF_CLASS_32 or ELF_CLASS_64 denoting and “invalid class”, a
32-bit ELF file and a 64-bit ELF file respectively.

I personally have never come across an ELF file with ELF_CLASS_NONE.
But if such class is found, it shall be considered as a data integrity error.
That is the approach implemented in this pickle.

Determines the encoding of the data in the file. This can be one of ELF_
DATA_NONE, ELF_DATA_2LSB or ELF_DATA_2MSB, denoting no encoding,
2’s complement and little endian, and 2’s complement and big endian.
Note that at this point the only supported encoding for signed numbers
in ELF files is 2’s complement.

This pickle considers an ELF file with encoding ELF_DATA_NONE as a
data integrity error.

ei_version

ei_osabi

Is the ELF header version number. This must be ELF_EV_CURRENT.

Identifies the ABI or operating system (these concepts are mixed in
ELF) used by the ELF file. This must be one of the ELF_OSABI_x
values defined in elf-common.pk.

The ELF specification recommends this field to be ELF_0SABI_NONE,
which actually identifies the “UNIX System V ABI”.

ei_abiversion

ei_pad

Identifies the version of the ABI to which the ELF file is targeted. The
ELF spec points out that the purpose of this field is to distinguish among
incompatible versions of an ABI, and that its interpretation ultimately
depends on the value of ei_osabi.

Are unused bytes. These bytes may be used for some particular purpose
in future versions of the ELF specification, and currently they must be
set to zero.

Identifies the kind of ELF file: whether it is an object file, an executable, a dynamic
object or a core dump.

This field is checked against the file-types configuration parameter, and pretty-
printed accordingly.

Chapter 7: ELF Header 19

e_machine

e_version

e_entry

e_phoff

e_shoff

e_flags

e_ehsize

e_phentsiz

e_phnum

e_shentsiz

e_shnum

e_shstrndx

Identifies the machine type on which the elf file is supposed to run.

When poke maps or constructs a E1f64_Ehdr (or E1£32_Edhr) struct, it sets the
global ELF machine to the value of this field.

This field is checked against the machine-types configuration parameter, and
pretty-printed accordingly.

Identifies the ELF version the ELF file conforms to. It must hold ELF_EV_CURRENT.

Is the virtual memory address of the entry point of a process executing the program
in this ELF file. This can be O#B.

Is the file offset of the program header table. If the ELF file doesn’t contain any
segment, then the table is empty and this field contains 0#B.

Is the file offset of the section header table. If the ELF file doesn’t contain any
section, then the table is empty and this field contains O#B.

Is a bitmap of file flags. This field contains ORed ELF_EF_x* values.

This field is checked against the filed-flags configuration parameter, and pretty-
printed accordingly.

Is the size in bytes of the ELF header.

e
Is the size in bytes of one entry in the program header table.

Is the number of entries in the program header table.

e
Is the size in bytes of one entry in the section header table.

Is the number of entries in the section header table.

Is the index in the section header table of the entry associated with the string table
that contains the names of the sections stored in the file.

If the ELF file doesn’t contain a section name string table (which is uncommon but
certainly possible) then this field contains ELF_SHN_UNDEF.

7.3 Usage

XXX

20

8 ELF Section Headers

Sections can be stored anywhere in an ELF file. They can also be of any size, of any type, have
any name (or no name) and their contents are free. The ELF file therefore contains a table,
called the section header table, whose entries describe each section. This table is sized and
linked from the ELF header via the e_shoff field. As we have seen, the section header table is
available in the shdr field of E1£f32_File and E1f64_File.

The Poke types denoting entries in the section header table are E1£32_Shdr and E1f64_Shdr
for ELF32 and ELF64 respectively.

8.1 Overview

type E1£32_Shdr =

struct

{
offset<Elf_Word,B> sh_name;
E1lf_Word sh_type;
E1lf_Word sh_flags;
E1£f32_Addr sh_addr;
E1£f32_0ff sh_offset;
offset<Elf_Word,B> sh_size;
E1lf_Word sh_link;
Elf_Word sh_info;
E1lf_Word sh_addralign;
offset<Elf_Word,B> sh_entsize;

};

type E1f64_Shdr =

struct

{
offset<Elf_Word,B> sh_name;
E1lf_Word sh_type;
E1f64_Xword sh_flags;
E1f64_Addr sh_addr;
E1f64_0ff sh_offset;
offset<E1lf64_Xword,B> sh_size;
Elf_Word sh_1link;
Elf_Word sh_info;
E1f64_Xword sh_addralign;
offset<E1lf64_Xword,B> sh_entsize;

};

8.2 Fields

sh_name Is the offset to the name of this section in the file’s section string table. Two or
more sections can share the same name.

sh_type Is a code identifying the type of the section. This is one of the ELF_SHT_* values.

The type of a section determines what kind of contents (if any) a section has:
relocations, a symbol table, a string table, executable compiled code, etc. These are
the types defined in the base spec:

Chapter 8: ELF Section Headers 21

ELF_SHT_NULL
This marks “unused” entry in the section header table. The first entry
in the table seems to always be an unused entry. Unused entries have
empty names.

ELF_SHT_PROGBITS
Section is what the spec calls “program specific (private) data.” In
practice, this basically means executable code. The prototypical prog-
bits section is .text.

ELF_SHT_SYMTAB
Section contains a symbol table. Each symbol table is an array of
ELF64_Sym (E1£32_Sym in ELF32) values spanning for sh_size bytes.
See Chapter 10 [ELF Symbols|, page 25.

ELF_SHT_STRTAB
Section contains a string table. Fach string table is an array of NULL
terminated strings spanning for sh_size bytes.

ELF_SHT_RELA

ELF_SHT_REL
Section contains ELF relocations, with or without explicit addend.
Each section contains an array of E1f64_Rela or E1f64_Rel (E1f32_
Rela or E1f32_Rel in ELF32) values spanning for sh_size bytes. See
Chapter 12 [ELF Relocations|, page 29.

ELF_SHT_HASH
Section contains a symbol hash table.

ELF_SHT_DYNAMIC
Section contains dynamic linking information in the form of a sequence
of dynamic tags. This is an array of E1f64_Dyn (E1£32_Dyn in ELF32)
values spanning for sh_size bytes. See Chapter 13 [ELF Dynamic Info],
page 31.

ELF_SHT_NOTE
Section contains notes. These are flexible annotations that are usually
used in order to reflect certain “auxiliary” attributes of the ELF file.
For example, the name and full version of the compiler that generated
it. The format in which the notes are encoded is well defined, and
supported by the elf pickles. See Chapter 11 [ELF Notes], page 28.

ELF_SHT_SHLIB
This value for sh_type is reserved by the ELF specification and has
undefined semantics.

ELF_SHT_DYNSYM
ELF_SHT_NOBITS
The section contents occupy no bits in the file.

ELF_SHT_INIT_ARRAY

ELF_SHT_FINI_ARRAY

ELF_SHT_PREINIT_ARRAY
Section contains an array of pointers to initialization/finalization/pre-
initialization functions, which are parameter-less procedures that do
not return any value. This is an array of offset<uint<64>,B>
(offset<uint<32>,B> in ELF32) values spanning for sh_size bytes.

Chapter 8: ELF Section Headers 22

sh_flags

ELF_SHT_GROUP
Section contains the definition of an ELF section group. See Chapter 6
[ELF File], page 13.

ELF_SHT_SYMTAB_SHNDX
Section contains indices for SHN_XINDEX entries.

The ELF supplements for architectures/machines and operating systems introduce
their own additional section types. See Chapter 14 [ELF Machines]|, page 32.

This field is checked against the section-types configuration parameter, and
pretty-printed accordingly.

Is a bitmap where each enabled bit flags some particular property of the section.
This is one of the ELF_SHF_* values. These are the flags defined in the base spec:

ELF_SHF_WRITE
The section contains data that should be writable during process exe-
cution.

ELF_SHF_ALLQOC
The section contents are actually loaded into memory during process
execution.

ELF_SHF_EXECINSTR
The section contains executable machine instructions.

ELF_SHF_MERGE
The section contents can be merged to eliminate duplication. The ELF
spec provides an algorithm (to be implemented by link editors) that
explains how to merge sections flagged with this flag. The algorithm
covers two cases: merge-able sections containing elements of fixed size,
and string tables.

ELF_SHF_STRINGS
The section contains a string table.

ELF_SHF_INFO_LINK
The sh_info field of this section header contains a section header table
index.

ELF_SHF_LINK_ORDER
This section is to be ordered in a particular way by link editors. The
order to use is specified by a link to other section header table via sh_
info. See the ELF spec for details.

ELF_SHF_0S_NONCONFORMING
This section requires special OS support to be linked.

ELF_SHF_0S_TLS
This section holds thread-local storage.

ELF_SHF_COMPRESSED
This section contents are compressed. Sections flagged as compressed
cannot have the flag ELF_SHF_ALLOC set. Also, sections of type ELF_
SHT_NOBITS cannot be compressed.

The ELF supplements for architectures/machines and operating systems introduce
their own additional section types. See Chapter 14 [ELF Machines], page 32.

This field is checked against the section-flags configuration parameter, and
pretty-printed accordingly.

23

9 ELF Program Headers

Segments can be stored anywhere in an ELF file. In case of relocatable objects, both sections
and segments are present in the file, and they most certainly overlap. The ELF file contains a
table, called the program header table, whose entries describe each segment. This table is sized
and linked from the ELF header via the e_phoff field. The program header table is available
in the phdr field of E1£f32_File and E1f64_File.

The Poke types denoting entries in the program header table are E1£32_Phdr and E1£64_Phdr
for ELF32 and ELF64 respectively.

9.1 Overview

type E1f32_Phdr =

struct

{
E1lf_Word p_type;
E1£32_0ff p_offset;
E1f32_Addr p_vaddr;
E1f32_Addr p_paddr;
offset<Elf_Word,B> p_filesz;
offset<Elf_Word,B> p_memsz;
E1lf_Word p_flags;
offset<Elf_Word,B> p_align;

};

type E1f64_Phdr =
struct
{
Elf_Word p_type;
Elf_Word p_flags;
E1f64_0ff p_offset;
E1f64_Addr p_vaddr;
E1f64_Addr p_paddr;
offset<Elf64_Xword,B> p_filesz;
offset<Elf64_Xword,B> p_memsz;
offset<Elf64_Xword,B> p_align;
3

9.2 Fields

p_type Is a code identifying the type of the segment. This is one of the ELF_PT_* values

The type of a segment determines what kind of contents a segment has. These are
the types defined in the base spec:

ELF_PT_NULL
This entry in the program header table is unused, and is ignored by
ELF readers.

ELF_PT_LOAD
The segment is loadable.

The stored file size is in p_filesz, and the loaded size is in p_memsz.
These sizes can be different in certain situations; for example, when the
loaded data has to fulfill different alignment constraints than the stored

Chapter 9:

p_flags

p_offset
p_vaddr
p_paddr

p_filesz

p_memsz

p_align

ELF Program Headers 24

data. However, the stored size shall not be larger than the loaded size.
This is checked by a constraint.

ELF_PT_DYNAMIC
The segment contains dynamic linking information in the form of a
sequence of dynamic tags. This is an array of E1Lf64_Dyn or E1£32_Dyn.

ELF_PT_INTERP
The segment contains a null-terminated path name that the kernel uses
to invoke as an interpreter.
This segment should not occur more than once in a file. If it is present,

it must precede any loadable segment entry. There is a constraint in
E1f32_File and E1f64_File that checks for this.

ELF_PT_NOTE
The segment contains notes. These are flexible annotations that are
usually used in order to reflect certain “auxiliary” attributes of the
ELF file. For example, the name and full version of the compiler that
generated it. The format in which the notes are encoded is well defined,
and supported by the elf pickles. See Chapter 11 [ELF Notes|, page 28.

ELF_PT_SHLIB
This value for p_type is reserved by the ELF specification and has
undefined semantics.

ELF_PT_PHDR
Segment contains the program header table itself, in both file and mem-
ory.
This segment type may not occur more than once in a file. If it is present,

it must precede any loadable segment entry. There is a constraint in
E1f32_File and E1f64_File that checks for this.

ELF_PT_TLS
The segment contains a thread local storage template.

Is a bitmap where each enabled bit flags some particular property of the segment
described by this entry. This is one of the ELF_PF_* values. These are the segment
flags defined in the base spec:

ELF_PF_X The segment is executable.

ELF_PF_W The segment is writable.

ELF_PF_R The segment is readable.

This is the file offset of the start of the segment contents.

This is the virtual address of the start of the loaded segment contents.

This is the physical address of the start of the loaded segment. Since sys-v ignores
physical addressing for application programs (which use virtual memory) this field
has unspecified contents in executables and shared objects.

Size of the segment in the file in bytes. This may be zero for some segments.

Loaded size of the segment in memory. This can be bigger than p_filesz. See
above.

This is the alignment of the segment contents in both file and memory.

If this field is either 0 or 1, no alignment is applied. Otherwise it must contain a
power of two, and p_vaddr == p_offset % p_align. This is checked by a constraint
in E1£f32_Phdr and E1f64_Phdr.

25

10 ELF Symbols

ELF symbols are implemented by the E1£32_Sym and E1£64_Sym struct types.

10.1 Overview

type E1£32_Sym =
struct

{

};

offset<Elf_Word,B> st_name;
E1f32_Addr st_value;
offset<Elf_Word,B> st_size;
E1lf_Sym_Info st_info;
Elf_Sym_Other_Info st_other;
Elf_Half st_shndx;

type E1f64_Sym =
struct

{

};

offset<Elf_Word,B> st_name;
Elf_Sym_Info st_info;
E1lf_Sym_Other_Info st_other;
Elf_Half st_shndx;
E1f64_Addr st_value;
E1f64_Xword st_size;

10.2 Fields

st_name

st_info

Index into the file symbol string table. If this entry is zero it means the symbol has
no name.

The type and the binding attributes of the symbol.

type Elf_Sym_Info =
struct uint<8>
{
uint<4> st_bind;
uint<4> st_type;
};
Where:

st_bind Specifies how the symbol binds. This must be one of ELF_STB_LOCAL,
ELF_STB_GLOBAL or ELF_STB_WEAK.

st_type Specifies the type of the symbol. This must be one of the ELF_STT_x*
values.
The following symbol types are defined by the core specification:

ELF_STT_NOTYPE
The symbol’s type is not specified.

ELF_STT_OBJECT
The symbol is associated with a data object, such as a vari-
able, an array and so on.

Chapter 10: ELF Symbols 26

st_other

st_shndx

ELF_STT_FUNC
The symbol is associated with a function or other executable
code.

ELF_STT_SECTION
The symbol is associated with a section. This is primarily
used for relocations.

ELF_STT_FILE
By convention, this symbol’s name gives the name of the
source file associated with the object file.

A file symbol has local binding, its section index is ELF_
SHN_ABS and it precedes the other local symbols for the file.
This is currently not checked by the pickles.

ELF_STT_COMMON
The symbol labels an uninitialized common block.

ELF_STT_TLS
The symbol specifies a Thread-Local Storage entity, in the
form of an offset.

This field specifies the symbol’s visibility. This is one of the ELF_STV_* values.
The list of symbol visibility defined by the core spec are:

ELF_STV_DEFAULT
The visibility of this symbol is defined by its binding. Global and weak

symbols are visible outside of heir defining component. Local symbols
are hidden.

ELF_STV_PROTECTED
This symbol is visible in other components but it is not preemptable.

A symbol with local binding may not have protected visibility. This is
checked by a constraint in E1f_Sym_Info.

ELF_STV_HIDDEN
This symbol is not visible to other components.

ELF_STV_INTERNAL
The meaning of this attribute, if any, is processor specific.

Some machine types define other values that can be used in st_other. See
Chapter 14 [ELF Machines|, page 32.

Every symbol table entry is defined in relation to some section. This holds the index
into the section header table of the section related to this symbol.

However, some values for this field indicate special meanings. These are the ELF_
SHN_x* values. The core specification defines the following:

ELF_SHN_UNDEF
The symbol is undefined.

ELF_SHN_ABS
The symbol is absolute, meaning its value will not change because of
relocation.

ELF_SHN_COMMON
The symbol refers to a common block that has not yet been allocated.

Chapter 10: ELF Symbols 27

ELF_SHN_XINDEX
The symbol refers to a specific location within a section, but the section
header index for that section is too large to e represented directly in
this entry. The actual section header index is found in the associated
SHT_SYMTAB_SHNDX section.

Some machine types define additional values with special meanings for st_shndx.
See Chapter 14 [ELF Machines], page 32.

st_value Offset from the beginning of the section identified by st_shndx.

st_size Size associated with the symbol. For example, the size of a data object. Symbols
that have no associated size, or unknown size, have zero in this field.

28

11 ELF Notes

ELF notes provide a generic mechanism for adding metadata to ELF files in the form of notes
stored in sections. ELF notes are implemented by the E1f_Note struct type.

11.1 Overview

type E1f_Note =
struct

{
Elf_Word namesz;
Elf_Word descsz;
E1lf_Word _type;
byte [namesz] name;
bytel[descsz] desc;
};

11.2 Fields

namesz The first namesz bytes in name contain a NULL-terminated character representation
of the entry’s owner or originator.

descsz The first descsz bytes in desc hold the note descriptor. The ABI places no con-
straints on a descriptor’s contents.

_type This word gives the interpretation of the descriptor. Each originator controls its
own types. The ABI does not define what descriptors mean.

name Note name.

desc Note descriptor.

29

12 ELF Relocations

ELF supports two kind of relocations: relocations without addend (REL relocations) and relo-
cations with addend (RELA relocations).

REL relocations are implemented by the E1f32_Rel and E1£64_Rel types. RELA relocations
are implementd by the E1f32_Rela and E1f64_Rela types.

12.1 Overview

type E1£32_RellInfo =
struct El1f_Word
{
uint<24> r_sym;
uint<8> r_type;

};

type E1f32_Rel =
struct
{
E1f32_Addr r_offset;
E1f32_RelInfo r_info;
};

type E1f32_Rela =
struct
{
E1£f32_Addr r_offset;
E1£f32_RelInfo r_info;
Elf_Sword r_addend;
};

type E1£64_Rellnfo =
struct E1f64_Xword
{
uint<32> r_sym;
uint<32> r_type;
};

type E1f64_Rel =
struct
{
E1f64_Addr r_offset;
E1f64_RelInfo r_info;

};

type E1f64_Rela =
struct
{
E1f64_Addr r_offset;
E1f64_RelInfo r_info;
E1f64_Sxword r_addend;

};

Chapter 12: ELF Relocations 30

12.2 Fields

r_offset This field specifies the location at which to apply the relocation action, which itself
depends on the specific kind of relocation.

This is the byte offset from the beginning of the section whose contents are to be
relocated. In executables and shared objects this offset is a virtual address; in all
other ELF files this refers to the stored data.

r_info XXX
r_sym XXX
r_type XXX
r_addend XXX

13 ELF Dynamic Info

XXX

31

14 ELF Machines

XXX

32

15 ELF OSes

XXX

33

Appendix A Indices

A.1 Concept Index

E

Elf _Note....oooi i e 28
ELE32 DYN. .. 31
ELf32_Ehdr ..ot 17
ELf32_Fileo et 13
ELf32_Phdr ... e 23
ELf32_Rel. ... e 29
Elf32_Rela ...ttt 29
E1f32_RelInfo..........ooiiiiiiiiiiiiinn... 29
Elf32_Shdriiiii i e e 20
ELf32_Sym........oooiiiiiiiiiiiiii i 25
ELf64 Dyn........ooooiiii i 31
Elf64_Ehdr ..ot 17
ElfB4_File ...ttt it 13

34

E1f64 _Phdrt 23
ElfB4_Rel.o e 29
E1f64_Rela ...t 29
E1f64_Rellnfo......... it 29
Elf64_Shdr ...t i 20
ELEO4_SYM. ...\ttt 25
O

overview, pickles......... ... il 5
P

POKE_LOAD_PATH.......o 4

	Introduction
	Who is this manual for?
	Approach used to describe Poke data structures

	Installation
	Build Requirements
	Fetching and unpacking poke-elf
	Configuring the sources
	Building and checking
	Installing

	Pickles Overview
	ELF Configurations
	ELF Configuration Parameters
	The ELF Configuration Registry
	Enumeration configuration parameters
	Mask configuration parameters
	Configuration parameters used by this pickle
	Getting printed representations of configuration parameters
	Checking valid configuration parameters
	Using configuration parameters in types
	Debugging the registry

	ELF Basic Types
	ELF File
	Overview
	Fields
	Methods
	Methods related to sections
	Methods related to string tables
	Methods related to section groups
	Methods related to loaded contents

	Usage
	Working with sections
	Working with string tables
	Working with section groups

	ELF Header
	Overview
	Fields
	Usage

	ELF Section Headers
	Overview
	Fields

	ELF Program Headers
	Overview
	Fields

	ELF Symbols
	Overview
	Fields

	ELF Notes
	Overview
	Fields

	ELF Relocations
	Overview
	Fields

	ELF Dynamic Info
	ELF Machines
	ELF OSes
	Indices
	Concept Index

