
ISSN 0084-6198

The Last
Algol Bulletin

no.52

CONTENTS

AB52.0

AB52.1

AB52.1.1
AB52.1.2
AB52.1.3
AB52.1.4
AB52.1.5

AB52.3

AB52.3.1

AB52.4

AB52.4. i

AB52.4.2

AB52.4.3

AUGUST 1988

Editor's Notes

Announcements

Death of Prof. A van Wijngaarden
FLACC
Some Anniversaries
Russian Standard for ALGOL 68
Data Protection Act

Working Papers

PAGE

1

Contributed Papers

Klaus Hackenberg, Implementation of ALGOL 68
on the CYBER 205 9

G.S. Tseytin, An Exception Handling Proposal
for ALGOL 68 14

C.H. Lindsey, A Browse through some Early
Bulletins 27

Survey of Viable ALGOL 68 Impolementations 5

AB 52p. I

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP WG2.1,
Chairman Helmut Partsch, University of NiJmegen).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IFIP undertakes no
responsibility for any action that might arise from such statements. Except
in the case of IFIP documents, which are clearly so designated, IFIP does
not retain copyright authority on material published here. Permission to
reproduce any contribution should be sought directly from the authors
concerned. No reproduction may be made in part or in full of documents or
working papers of the Working Group itself without permission in writing
from IFIP."

Facilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester. Word-processing
facilities have been provided by the Barclay's Microprocessor Unit, University of
Manchester, using their Vuwriter system.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, MI3 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4.50 (or £2.40) each.
However, it is regretted that only AB32, AB34, AB35, AB36, AB38-43 and AB45
onwards are currently available. The Editor would be willing to arrange for a
Xerox copy of any individual paper to be made for anyone who undertook to pay for
the cost of Xeroxing.

AB52.0 EDITOR'S NOTES.

As you will have noticed, it is almost four years since the last issue of
the ALGOL Bulletin. The reason is, as usual, lack of material. Clearly, some
consdideration of the future is called for. Let us first consider why the AB
exists in the first place.

The ALGOL Bulletin is the official journal of IFIP Working Group 2.1, which
is the body responsible for both ALGOL 60 and ALGOL 68. However, for many years
past the primary focus of attention of the Working Group has moved away from
algorithmic languages towards specification languages and program transformation
paradigms, but this has not been reflected in the contents of the AB, which as I
have always seen it, is primarily a vehicle for mutual support amongst the fans
of ALGOL (both of them), and for the promulgation of official pronouncments from
the WG (new language extensions, interpretations of the Report, and the like). In
all of this, I believe that the Bulletin has played a valuable role. Now,
however, ALGOL 68 as a language is very stable. It is used and loved by those who
understand its benefits, and ignored (or misquoted) by the rest, and this is a
steady state that will doubtless continue for some long time.

The Working Group discussed all this at some length, and finally came to the
conclusion that the ALGOL Bulletin had now fulfilled its primary purpose, and
that the time had therefore come for it to be lald to rest.

AB 52p.2

This current issue will therefore be the last. Since the majority of~
subscriptions also expire with this issue, that is also an administrative
convenience. The expiry number of your present subscription will be found on your
mailing label and, if it is greater than 52, then you will find a refund for the
unexpired portion enclosed with this issue (or, if you use a subscription agency,
the refund will have been sent there). I shall maintain the mailing list, in case
we ever need to circulate the ALGOL community again, and I am still able to
supply most back numbers for the usual fee.

However, it is possible that a Phoenix will indeed rise from the ashes. In
this day and age it is more appropriate to keep in touch with a community of
llke-minded individuals by electronic means, and there has therefore been a
proposal to set up an ALGOL Bulletin Board as either a moderated newsgroup or as
a mailing list on USENET. Robert Dewar (cmcl2!acf2!dewar) and Robert Uzgalls
(ucla-cslbuz) have been appointed as Joint editors to try to set this up. If and
when all of this has come to pass, we shall post an announcement in
comp.lang.mlsc. Also, (in the absence of a more specific ALGOL 68 newsgroup),
anything which the ALGOL com~/nity should know about will also be posted there.

It is now 16 years since I was appointed as Editor of the ALGOL Bulletin,
and in that time I have produced 18 issues. I wish it had been possible to
produce more, but it was not to be. And although it may be the end of the era for
the ALGOL Bulletin, I am quite sure that it is not yet the end of the era for
ALGOL.

AB52.1 Announcements.

AB52.1.1 Death of Prof. A van Wi~n~aarden

PROF. DR. IR. A. VAN WIJNGAARDEN has died on the 7th of February 1987. He
was 70 years old.

Aad van WiJngaarden was one of the giants of the early Informatics in his
country. At a time when there was no Informatlcs, when computers were often still
called electronic brains, he decided that Holland could play a role in that area.
He supervised the construction of most of the early computers in the Netherlands.
He taught the first courses of algorlthmlcs and introduced a generation of
mathematicians to Informatlcs.

Outside of Holland he is mainly known for his contribution to the ALGOL
effort. He was strongly involved in the development of ALGOL 60, right from the
start. But his main venture was the design of ALGOL 68, to which he gave all his
heart.

ALGOL 68 is now already history. Twenty years is very long in a branch of
science where every five years a revolution is preached, where the majority of
researchers have less than five years experience and therefore are convinced that
the world started when they joined it. In actual fact, the developments in
Informatics are not so fast and there is a clear continuity from the early
sixties to the present time.

ALGOL 68 prepared the ground for functional languages by its clarification
of concepts and its orthogonal expression structure. It presented compilermakers
with a formidable challenge and thereby raised the state of the art enormously.
The main criticism raised against it, that its definition is unreadable due to
its formality, sounds somewhat ironic in the light of the ever-increasing level
of formality in modern Informatics.

AB 52p.3

Although there is little present uma ef A__~OL 68, the language has had a
lastlng influence on the thinking about' pZZo~TQing languages. Terms llke
coercion and references are common even to a lin~aaEe llkeC, although few people
remember who pioneered those concepts.

Aad a l w a y s i n s i s t e d on e l e g a n c e a n d p r e c i s i o n i n e x p r e s s i o n , on using
formality where it counts. This attitude shaped b o t h the lanEuage ALGOL 68 and
its description. I am proud to have played, at his request and under his
guidance, a minor role in the intellectual adventure of ALGOL 68.

Aad has influenced many people decisively in their scientific career. As a
professor and as director of the Mathematical Centre for twenty years he formed
practically all o f the people who are presently responsible for the science of
Informatlcs in the Netherlands.

Aad was a man about whom many anecdotes have been told; all who knew him
will tell their own. At the MC we called him "baasJe", the small boss. He could
be wonderfully charming and totally exasperating. He was the ideal professor,
teaching, inspiring and stlmulatingus all.

Those who, l i k e me, h a v e b e e n h i s c l o s e s t d i s c i p l e s , w i l l remember a l s o many
struggles with him. Because he was such a father t o us, it was very hard to go
our own way when the time had come. In each case Aad has, I think, warmheartedly
supported and encouraged us on our separate ways.

The last ten years have been very hard for Aad. Personal tragedy struck him,
when he lost also his second wife. Professionally, his great work was completed
and by no means warmly accepted. He must have had a feeling of being left by the
wayside. He put himself aloof from the further development of Informatics and
devoted himself to his children and his hobbies.

Now he has died. Nobody can hurt him anymore. Aad has led a full llfe. He
has made his mark on the world. His memory is cherished by his children and by
his pupils. Nobody can hope for more in his lifetime.

Nijmegen, February 1987
C.H.A. Koster.

AB52.1.2 FLACC

In order to increase the availability of ALGOL 68 for research and
educational purposes, Chion Corporation is making the most recent version of
FLACC, FLACC VI.7S, available in an inexpensive, unsupported version.

This in now the only version of FLACC which Chion is marketing (FLACC Vi.4U
has been discontinued). The supported version of FLACC VI.7S has proved very
reliable, requiring no maintenance for over two years. We decided it was unfair
to continue charging rental rates, so this version is now being offerred for an
inexpensive, one-tlme charge of C$2000, with a 25% discount for educational
institutions.

FLACC Vi.7S runs either as a load-and-go system, or as a production compiler
which produces object modules. It is also considerably faster than FLACC VI.4U.

FLACC runs on IBM machines and their clones, under the operating systems
MVS, MVT, CMS and MTS.

Further information from
Chion Corporation
P.O. Box 4942
South Edmonton
Alberta
Canada T6E 5G8

AB 52p.4

AB52.1.3 Some Anniversaries

As we went to press, I Just reallsed that two important anniversaries have
crept up unnoticed.

The first is the 30th anniversary of the meeting, in May 1968, at which for
the first time scientists from the USA and Europe agreed on a universal
programmlng language. This was initially known as IAL, the International
Algorithmic Language. It was later christened ALGOL 58, and its main
implementation, JOVIAL, is still alive and well.

The second is, of course, the 20th anniversary of ALGOL 68, which was
finally voted into being by IFIP WG2.1 on 20th December 1968 (see an account
culled from early versions of the AB elsewhere in this issue). ALGOL 68 also is
still alive, and even well in those places where its true worth is still
appreciated. The plain fact is that, in 20 years, nobody has really come up with
anything better as a complete language package, although there are of course
several features fashionable in modern languages which ALGOL 68 does not possess.

AB52.1.4 Russian Standard for ALG0~ 68

In spite of the failure to obtain an ISO Standard for ALGOL 68, the Soviet
Union, where use of the language is apparently quite significant, is pressing
ahead with a Russian Standard. This will come in two parts. The first will be
essentially the Russian translation of the Revised Report, as already published
by MIR Publishers, but with modified hardware representations to cope with the
Cyrillic alphabet, and including also the IFIP Standard Hardware Representation.
The second will contain optional language extensions, specifically the Modules
and Separate Compilation proposal from AB43.3.2 together with a home-growm
Exception Handling mechanism (described elsewhere in this issue).

AB52.1.5 Data Protection Act

Although this is the last issue of the ALGOL Bulletin, it is my intention to
keep the mailing list intact, in case we ever need to reach the ALGOL community
again.

You should therefore take note that I keep the mailing list on a computer
file, that each of your names and addresses is on that file, and that in
accordance with the U.K. Data Protection Act you are entitled to be aware of that
fact and to register any objection.

2AB 52p.5

AB 52 .3 .1 Survey o f V i a b l e A;rX~L 68 lmDlemen ta t iong

Th i s Survey has been r e s t r i c t e d ' to i m p l e m e n t a t i o n s which you can
a c t u a l l y o b t a i n and use . Each o f them has an i d e n t i f i a b l e p e r s o n or
o r g a n l s a t l o n r e s p o n s i b l e f o r i t s m a i n t e n a n c e , and most have been used on
a t l e a s t one s i t e o t h e r t h a n t h a t where i t was d e v e l o p e d .

Most o f the column h e a d i n g s a r e s e l f - e x p l a n a t o r y . " D e v i a t i o n " means

Name o f Hardware O p e r a t i n g

System System

FLACC IBM 370 OS/VS/MVS
Amdahl /MFT/MVT
S t emens CP/CNS

MTS

ALGOL 68C! IEM 360 OS/MVT
i

Release l i IBM 370 OS/VS2
I os/Hvs
! os /~ r
I os/vsl

, V M / C ~ S

DEC-10 TOPS-10
DEC-20 TOPS-20

DEC VAX BSD 4 .2
VMS

Prime

T e l e - BS3
I f unken
!TR440
TR445

CYBER 205 VSOS 2 .3

P r i n c i p a l

Sublanguage f e a t u r e s

no sema
no f l e x
n o forma¢
r e s t r i c t e d t r a n s p u t

improved t r a n s p u t
a v a i l a b l e

a d d i t i o n a l o p e r a t i o n s
fo r v e c t o r s & matr ice~

- P r i n c i p a l

Supe r l anguage f e a t u r e s

e x c e p t i o n h a n d l i n g
F o r t r a n i n t e r f a c e

a u t o m a t i c . ~ : - f o r
any g.~

uvto, ~pwnto and u n t i l
In l o o p - c l a u s e s

d i s p l a c e m e n t o p e r a t o r
(: - : -)

sndf , .~E.~and t h e f
s e p a r a t e c o m p i l a t i o n
scopes not checked

l

AB 52p.6
t h a t , i t i s p o s s i b l e t o w r i t e some program, v a l i d and w i t h d e f i n e d
meaning bo th i n t he g i v e n i m p l e m e n t a t i o n and a c c o r d i n g to t he R e v i s e d
Repo r t , which w i l l p r o v i d e r e s u l t s d i f f e r e n t from t h o s e d e f i n e d by t he
R e v i s e d Repo r t . Under "Money", "nomina l " u s u a l l y means under $200, "yes"
means a r e a l i s t i c commercia l r a t e . "MC T e s t " means t h a t i t has been
t e s t e d u s i n g the blC Tes t Set (s e e AB 4 4 . 1 . 2) and t h a t the implemantor
c l a i m s i t r an c o r r e c t l y . In a l l c a s e s , t he p e o p l e l i s t e d i n t he l a s t
column s h o u l d be a b l e t o p r o v i d e f u r t h e r i n f o r m a t i o n .

Other f e a t u r e s

l o a d and go v e r s i o n
a v a i l a b l e

ve ry c o m p l e t e c h e c k i n g
(hence n o t - s o - f a s t
r u n n i n g)

Devia. Money? MC

t ions~ Tes t '

No Yes Yes

Y e s Nominal No [f a s t r u n n i n g
to no g a r b a g e c o l l e c t o r

Un ive r -
s i t i e s

Where t o o b t a i n i t

Chlon C o r p o r a t i o n
Box 4942, EI]ttONTON
A l b e r t a
Canada T6E 5G8

ALGOL 68C D i s t r i b u t i o n
S e r v i c e

C o m p u t e r L a b o r a t o r y
!Corn Exchange S t r e e t
!CAM~B~RIDGE CB2 3QC
! U n i t e d Kingdom

Rober t H i l l
Computing S e r v i c e
U n i v e r s i t y of Leeds
LEEDS LS2 9JT
Un i t ed Kingdom

Dr R. C. Blake
Computing S e r v i c e
U n i v e r s i t y of Essex
Wivenhoe Park
COLCHESTER CO4 3SQ
U n i t e d Kingdom

ALGOL 68C D i s t r i b u t i o n
S e r v i c e (s e e above)

E n q u i r i e s to
ALGOL 68C D i s t r i b u t i o n
S e r v i c e (s e e above)

Klaus Hackenberg
Rechenzent rum der
R u h r - U n i v e r s i t a e t
P o s t f a c h 102148
D-4630 BOCI-I~M
F e d e r a l German R e p u b l i c

Klaus Hackenberg
(see above)

AB 52p.7

qame o f

~ystem

CONTROL
DATA
~tLGOL 68

~68RS

Hardware O p e r a t i n g P r i n c i p a l P r i n c i p a l

System Sublanguage f e a t u r e s S u p e r l a n g u a g e f e a t u r e s

no Flex (e x c e p t bounds i n f o r m a l -
d e c l a r e r s

T E S ~ 200
(similar

to
IBM 36O)

CI)C 6000
-7000

170
s e r i e s

cvc Cyber

PERQ

VAX
SUN3

ICL 2900

Honeywe 1
Leve 1
68 / I~S

DEC VAX VMS

UNIVAC
1100
s e r i e s

IBM PC
S i r i u s
V i c t o r
A p r i c o t
RMNIMBUS

NOS 2
NOS/BE
SCOPE 2

NOS 2
NOS/BE
SCOPE 2.1

PBX2

BSD 4 . 2 , 3

V~/B

1 M u l t i c s

EXEC
V l l l

MS -DOS

s t r i n g)
no union
no sema
no head

one lone
f l e x i b i l i t y i s an

a t t r i b u t e o f a
m u l t i p l e v a l u e

o f f i c i a l s u b l a n g u a g e
(SIGPLANNot ices
12 5 May 1977 or
In formal I n t r o d u c -
t i o n Appendix 4)

but hear i s a l l o w e d

i n d i c a t o r s t o be
d e c l a r e d b e f o r e use

no sema
scopes not checked

no garbage collector
scopes not checked

no ~_~..C, f o r m a t ,
~OtO, ~v tes , lonE,
s h o r t , hear , f l e x ,
s ~

no anonymous r o u t i n e
t e x t s

r e s t r i c t e d scope o f
a r r a y s , r e s -
t r i c t e d [][] modes

no t r a n s i e n t name
r e s t r i c t i o n

ICF macros a l l o w d e f i n -
i t i o n o f o p e r a t o r s i n
machine i n s t r u c t i o n s

mode v e c t o r
l n d e x a b l e s t r u c t u r e s
f o r a l l e l e m e n t s o f

a r r a y
no t r a n s i e n t name

r e s t r i c t i o n
modular c o m p i l a t i o n

of any p r i m i t i v e
mode

complex m a t h e m a t i c a l
f u n c t i o n s

min and
m a t r i x and v e c t o r

o p e r a t o r s
e x c e p t i o n h a n d l i n g

mode address f o r access
to memory-mapped
addresses

access to MS-DOS p r i m i -
t i v e s , machine coded
s u b r o u t i n e s and 8087
ch ip f e a t u r e s

Dev ia - Money? MC

t i o n s ? Tes t ?

No No No

No Yes

No Nomina l No

Yes Yes

Yes Nominal
to

U n i v e r -
s i t i e s

AB 52p.8

Other f e a t u r e s Where t o o b t a i n I t

TRACE f a c i l i t y
i ndependen t compi-
l a t i o n o f r o u t i n e s
f a s t r u n n i n g

Yes s e p a r a t e c o m p i l a t i o n

Yes

Yes

Yes Yes Yes

Yes No Yes

Yes J No

v e r y comple t e
c h e c k i n g
f a s t c o m p i l a t i o n
s low r u n n i n g

VAX and SIM v e r s i o n s
use the Amsterdam
Compi le r Ki t

s o u r c e - l e v e l s y m b o l i c
d i a g n o s t i c s

r e - e n t r a n t o b j e c t code
s o u r c e - l e v e l s y m b o l i c

debugger

r e - e n t r a n t compiler
and object code

source-level symbolic
debugger

French represen-
tations (inhibitable

by pragmat)
independant com-

pilation of
routines

i n c r e m e n t a l c o m p i l -
a t i o n w i t h immedia te
e x e c u t i o n
many o f the m i s s i n g
f e a t u r e s w i l l appea r
i n l a t e r r e l e a s e s

J . Nadrcha l
I n s t i t u t e o f P h y s i c s
C z e c h o s l o v a k Academy o f
S c i e n c e s
180 40 PRAHA 8
Na S lovance 2
C z e c h o s l o v a k i a

C o n t r o l Data S e r v i c e s
P . B . 111
RIJSWlJK (24)
The N e t h e r l a n d s

Dr C. H. L i n d s e y
Dept. o f Computer Sc ience
U n i v e r s i t y o f Manches te r
MANCHESTER M13 9PL
Un i ted Kingdom

ICL l o c a l s a l e s o f f i c e

Richard Wendland
P r a x i s Systems L i m i t e d
20 blanvers S t r e e t
BATH BA1 1PX
U n i t e d Kingdom

Products Group
SPL I n t e r n a t i o n a l
Research Centre
The C h a r t e r
ABINGDON OX14 3LZ
Un i ted Kingdom

Danie l Taupin
L a b o r a t o i r e de P h y s i q u e
des S o l i d e s
U n i v e r s i t e de P a r i s XI
91405 ORSAY
France

Algol A p p l i c a t i o n s Ltd
11 Wessex Way, Grove
WANTAGE
Oxon OX12 OBS
Un i t ed Kingdom

AB 52p . 9

A B 5 2 . 4 . I

Implementation of ALGOL68 on the CYBER 205

Klaus Hackenberg
(Ruhr-Universi t~t Bochum, Rechenzentrum)

1. General design goals

The programing language FORTRAN is widely used on today ' s vector and
parallel computers, but it is lacking nearly all relevant concepts for these new
machine architectures. The remedy of introducing machine specific language ex-
tensions and subroutine calls requires great effort in program design and prohibits
the portabil i ty of programs.

Therefore ALGOL68 was implemented on the CYBER 205 in Bochum, a
language which is more suitable for new machine architectures. On one hand
it contains vector operations (like the assignation of rows) and on the other it
allows the definition of new operators within the existing language. Together with
the adapt ion of the ALGOL68C compiler (from the University of Cambridge) a
prelude with vector operations has been designed which allows an efficient use of
the special CYBER 205 hardware.

The problems arising on the CYBER 205 when programing in FORTRAN 200
may be divided into three classes :

a} Problems depending on the hardware design : The vector size is limited to
65535 elements on the CYBER 205 and the elements being processed by a
vector instruction have to be consecutive in memory. All these restrictions
have to be handled explicitely by the programer.

b) The notat ion for special subrout ine calls (for instance using semicolons, empty
parameters and hexadecimal specification of the desired subinstruct ion by so-
called "G-b i t s ") together with an unusual choice for names (for instance ABS,
CABS, VABS, VCABS for essentially the same function namely "absolute
value") which differs from the FORTRAN concept of "generic names" result
in less readable and less understandable vectorised programs.

c) Programs wri t ten in FORTRAN 200 cannot be run without alterations on
other computers, because of their special notat ion and special subroutine
calls.

AB p 5 2 . 1 0

Therefore the following design goals for an ALGOL68 vector prelude where s e t u p
which allow portable use r ' s programs together with an efficient use of the special
hardware properties of the CYBER 205 :

a) From the user 's point of view there should be no restriction for the size of
vectors (which means tha t any hardware vector instruction is repeated as often
as necessary automatically). There should be no limitation to consecutive
vectors in memory (which means that an appropriate GATHER or SCATTER
operation is done automatically whenever necessary).

b) The same name should be used for the same function on different arguments
(for instance a b s should be used to denote the absolute value for scalars and
(elementwise) for vectors and matrices - - so called "overloading" of operator
symbols. All notat ions should be s tandard language constructs. New opera-
tors should behave like other language constructs; therefore for instance equal
lower and upper bounds are required for operations on rows, empty rows are
permit ted and so on.

c) The use r ' s programs should be portable. Therefore the definitions of new
operators are gathered into a prelude so tha t any machine dependency is in
tha t prelude - - and the use r ' s programs can be run without alteration on any
other (scalar or vector) computer. One version of this prelude is given using
only scalar ALGOL68 so that the new operators can be easily implemented
on any other computer. A second version of the prelude is running on the
CYBER 205 using special hardware instructions instead of this scalar code.

2. Actual state of the project

Up to now a compiler for ALGOL68C has been implemented. This program-
ing language has been developed at the University of Cambridge and differs slightly
from ALGOL68 (as defined in the "Revised Report"); but ALGOL68C contains a
relevant subset of ALGOL68. Especially all necessary language concepts for the
CYBER 205 are included. The compiler has been modified to generate vector
instructions when copying rows. In addit ion a large prelude containing operations
on vectors and matrices usefull in linear algebra has been developed. Besides
others it includes the operators listed below.

AB 52p . 11

• The basic arithmetic operations for data types int, realand t e m p i for vectors
and matrices are provided :

4-, - , *, / (or % respectively)

These operators take two vectors or two matrices or a vector and a scalar or
a matrix and a scalar as their arguments and perform the given operation
on each element. According to ALGOL68's principle of orthogonality any
mixture of the three dat a types mentioned above is supported. For reason of
efficiency the operators

4-<, - < , *<, / < (or %< respectively)

have been added which combine an operation and an assignation in order to
avoid useless copying in statements of the form a := a + b. Additionally the
operators i and eonj for computations with complex vectors and matrices
have been implemented and an operator <> denoting the (mathematical)
product of two matrices.

• In generMising the well known standard functions the following transforming
operators have been added :

exp, In, sqrt , abs, re, ira, widen, entier, round,
sin, cos, t a n , . . .

In order to obey the principle of orthogonality these operators have also been
defined for scalar arguments.

• Operators on vectors and matrices having a scalar result and operators on ma-
trices having a vector result which are often needed in mathematical formulas
have been included :

s u m and p r o d u c t for the sum and the product of all elements of a vector, eq
(equality of all components), <> denoting the scalar product of two vectors
and the product of a vector and a matrix and additionally the operators rain,
m a x , m i n a b s and maxabs .

• To allow the use of special CYBER 205 hardware instructions a number of
machine oriented operators have been defined :

gathered , scat tered, in terva lvec tor and value.

They may be used to gather or scatter components of a vector, to generate
a vector of equidistant values s t a r t + (i - I) * s t ep (1 <_ i < n) and to
assign a scalar value to every component of a vector or a matrix.

• Some special triadic operations taken from linear algebra (vector p lusab vec-
tor t imes scalar, vektor p lu sab scalar t imes vector and matrix p lusab outer
product of two vectors) have been added which use the LINK instruction of
the CYBER 205.

AB 52p . 12

• Three language extensions have been added for reason of convenience only :

diag, coding und t r a n s p o s e .

The result of these operators is a pointer to the main diagonal or the opposite
diagonal of a square matrix or a pointer to the transposed matrix without
actually copying the elements of the matrix.

3. Example

To illustrate the advantage of using operators from this prelude let us now
look at a mathematical example, the calculation of a definite integral. Compute

b

f l (x)dx
a

of a real valued function f(x) using Hermite 's quadrature formula. Let

b - a / b - a a + b 1 . g(y) : = + - y,

Then according to Hermite 's formula

b 1

I I - 1 - - ~ - - Z / 72k 4- 1
I (x) d x = 9(y)~-~ dY~n4-1 ~ og~Cosi-~ - .

What does this algorithm look like in ALGOL68 notation? There are only
two relevant formulas. The first is the transformation g :

g(y) : = - - ~ - f ~ - y +

This can be written (using the mode f unc t ion explained later) as follows :

f u n c t i o n g = ([/ r e a l y) {] rea l :
(b - a)/2 * f ((b - a)/2 * y + (a ± b)/2) * sqr t (1 - y ** 2)

The second formula gives the result of the computation :

n n

-

n + I ~ g ~ c ° s = c g cos +kc where c = - -
k=o k=o rt 4- 1

AB 52p. 13

Using opera tors of the prelude this can be wri t ten as follows :

r e a l c = pi / (n + 1) "
; c * s u m g (cos (J n t e r v a / v e c t o r (c /2 s t e p c s ize . + I)))

And here is the complete p rogram :

m o d e f u n c t i o n = p r o c ([] r ea l) [] r e a l

; p r o c hermi te approximat ion = (f u n c t i o n f, r e a l a, b, i n t n) r e a l :
b e g i n

f u n c t i o n g = ([] r e a l y) [/ r e a l :
(b - a) /2 * f ((b - a) /2 * y + (a + 5)/2) * s q r t (1 - y ** 2)

; r e a l c = p i / (n + 1)
; c * s u m g (cos (i n t e r v a l v e c t o r (c /2 s t e p c s ize n + l)))

e n d

It uses the newly declared mode f u n c t i o n being a function with a real vector
as its a rgument and re turning a real vector as its result. No intermediate storage
has to be declared by the user and no care has to be taken for long vectors - -
and the t ime used for computa t ion is comparable to the time used by a similar
F O R T R A N program.

4. Availability

The implementat ion described above is running on the CYBER 205 at
Bochum under VSOS 2.2.5 operat ing system.

References :

[1[K. Hackenberg :
ALGOL68 auf der CYBER 205
Bocbumer Schriften zur Parallelen Datenverarbei tung 7 ,
Rechenzentrum der Ruhr-Univers i t£ t Bochum 1985.

AB52.4.2 An Exception Handlln~ orooosal for ALGOL 68,

G. S. Tseytln.
Leningrad State University.

AB 52p. 14

I n my view, the need f o r a good mechanism f o r e x c e p t i o n h a n d l i n g
becomes i m p e r a t i v e when we accep t the concep t o f modules (packages) . Every
t ime I t e l l my s t u d e n t s t h a t a package must take c a r e o f t e s t i n g da t a f o r
v a l i d i t y I am embar r a s sed a t g i v i n g e x a m p l e s : ~ t h e t e s t f a i l s then what?
~ i . I canno t s u g g e s t to them to p r i n t a message and then to s t o p , b u t J u s t

a s w e l l I d o n ' t want to s u s p e c t an e r r o r a t eve ry c a l l t o a package
f u n c t i o n .

I have deve loped my p r o p o s a l s f o r e x c e p t i o n h a n d l i n 5 i n the same form
as P a r t I I o f the Modules p r o p o s a l [AB43.3.2]. I n f o r m a l l y , t h e s e c o n s i s t o f
two parts, first, the concept of raising and handling exceptions, second,
system-deflned exceptions.

The first is based on the idea of "dynamic identification", i.e.,
obtaining data defined in an environ of a call within the routine called.
There must be a "primary" defining occurrence of a "dynamic" identifier,
and then it can be "redefined" in newer environs with a reference to the
same "primary" declaration. An applied occurrence of such an identifier
"statically" identifies the primary defining occurrence but yields the
value from the newest redefinition. We have been long experimenting with
this idea. Indeed, a version of it was about i0 years ago implemented in
our instrumental compiler used to bootstrap the working implementation.

So I had to i n t r o d u c e t h r e e new c o n s t r u c t s . An e x c e p t i o n - d e c l a r a t i o n
p r o v i d e s the p r imary d e f i n i n g occu r r ence o f an e x c e p t i o n and s p e c i f i e s the
mode o f the h a n d l i n g r o u t i n e f o r t h i s e x c e p t i o n . A h a n d l e r - d e c l a r a t i o n
" r e d e f i n e s " t he e x c e p t i o n by p r o v i d i n g the a c t u a l h a n d l i n g r o u t i n e . An
e x c e p t i o n - c a l l looks l i k e an o r d i n a r y c a l l excep t f o r a s p e c i a l r u l e f o r
f e t c h i n g the r o u t i n e .

I t may look l i k e t h i s .

module stacks -

exceotio~ (stack) void stack underflow;

p_~ vroc pop - (stack s) ~_~:

(..... raise stack underf]ow (s) ...);

o~ stack underflow: (stack s) void:
(print ("alas / ") ; stop) ;

access stacks (

o_nn stack underflow: (stack s) void:
(..... Eq to underflow; ...);

under flow:

pop (. . .)

)

AB 52p.15

In this example an underflow detected during the call of pop will not
result in printing alas! but most likely in Jumping to underflow.

An exceptlon-call is allowed to yield a value, supposed that the
programmer knows what to do with it. Thus raising an exception does not
necessarily imply a Jump to an outer environ. So this mechanism can be
used, e.g., by a stacks module to find out what size of stack the user
wants. It seems to be very inefficient and certainly un-algol-like to use
this sort of mechanism systematically but I think it is all right to use it
as an exceDtlon.

It would seem to be more orthogonal to allow to connect with exceptions
all kinds of values, not only routines. Then the exception mechanism
described above would serve only to fetch the routine, which could then be
called by the regular calling mechanism. However I did not generalize it
that far; the call caused by an exception must be different from an
ordinary call in order to make it possible to define DroDa~atlon of
exceptions. There is no explicit reraise; its part is played by an ordinary
raise. Raising the same exception while elaborating an exception-call has
the effect of starting the search for a handler routine from the environ
statically containing the handler-declaratlon used for the first time the
exception was raised.

Handler-declaratlons are syntactically declarations though they have no
applied occurrences, They could instead have been units that could be
elaborated several times within the same environ. But I thought the first
solution safer.

The intended implementation of this sort of dynamic identification is
that a table is built at compilation time to connect each
handler-declaratlon with the portion of object code where this declaration
can be used, i.e., from the semicolon following the handler-declaratlon to
the end of the range. Then any exceptlon-call can be resolved either at
compile time or at run time by examining the return address for the current
routine. (In our instrumental compiler we used a different method.)

The second part of my proposal, the list of system-deflned exceptions,
is somewhat less secure because it has to make allowance for peculiarities
of local operating systems. So my specifications for such exceptions have
been made as unobliging as possible. Completion of a system-produced
exceptlon-call results in terminating the program or, more precisely,
raising the terminate exception. Usually an operating system allowing to
set a trap for an exception in some 'environ' destroys all inner 'environs'
when the exception is actually trapped, so it is impossible to return to
the place where the exception occurred. Under my definitions the only way
to leave a handler routine without completing it is to Jump out of it,
either directly or by raising another exception. So it is necessary to set
traps for all system exceptions in every environ containing any
handler-declaratlon.

However I have allowed for some system-defined (or, better,
implementation-defined) exceptions not to follow the above scheme. The
following exceptions allow the program to continue after successful
completion of the exceptlon-call:

a) all exceptions caused by transput events (they are all parallel to
the existing transput routines);
h) the exception caused by a wrong value of a bound in a slice; in this
case the handler routine may provide a new value for the bound.

AB 52p.16

Handlers for some exceptions asscoiated with multiple values can obtain
additional information by raising special exceptions (e.g., a handler can
find out whether the offending name is a subname of some given name).

Here is the formal definition in the form of amendments to RR. The
English language version was developed parallel to the Russian language
version (with Russian paranotions, etc.);oonly the Russian version will
become part of our standard extensions to ALGOL 68, alongside a Russian
translation of the Modules and Separate Compilation 3 proposals from
AB43.3.2. Some possible alternatives to the decisions presented here
(including a fully different and much weaker system) have been discussed as
well. At the last meeting our WG insisted on extending the list of standard
exceptions, even at the price of making the conventions less obliging.

Formal Definition of Exceotlon-handlin2 extension.

1.1.4.4. Recovery actions

a) For some cases where elaboration is said to be undefined {l.l.4.3.a,b}
recovery actions are specified. This means that such recovery action is to
he taken unless the implementer has provided a more satisfactory solution
for this situation. However the implementer must preserve for the
programmer a way to require that the action taken be exactly the recovery
action specified here.

{The recovery action usually includes raising an appropriate
exception.}

b) A recovery action consists in a calling of some routine, possibly with
{parameter} values. The routine is specified by means of a representation
of an applled-ldentlfler yielding this routine in the environ of the
partlcular-prelude.

1.2.3.

E) DEC :: ... ; PROCEDURE EXCEPTION TAG.
V) EXCEPTION :: exception ; handler.

2.1.2.

h) "To handle" is a relationship between a value {a routine} and a scene
{an exception definition} which may hold "inside" a specified locale. This
relationship is made to hold upon the elaboration of a handler-deflnltlon.

i) An environ can be "connected" to another environ {with older scope} "by
means of" a scene {an exception definition}. This relationship may hold for
an environ created at the time of the elaboration of an exceptlon-call.

2.1.4.3.

h) {For some events recovery actions are defined, see 1.1.4.4.}

i) An action may be interrupted if the computer discovers that time
(memory space) is nearly exhausted. The recovery action for such a case is
a calling of the routine time exhaustion recovery {i0.2.5.p} (space
exhaustion recover 7 |I0.2.5.q}). {It is expected that the remaining amount
of time (space) will he sufficient for the recovery action to secure an
orderly termination or to obtain additional resources.}

52p.17

3.2.2.

a) , the recovery action being a calling of the routine scope error
recovery {10.2.5.m}.

b) {{Replace the last lines of "Case A")}
For each constituent eKception-deflnltion X, if any, of C,

• the scene composed of
(1) X, and
(ll) the environ E,
is ascribed in E to the exceptlon-ldentlfler of X;

If each 'PROP' enveloped by 'PROPSETY' is some 'DYADIC TAD', or
'label TAG' or 'PROCEDURE mxceptlonTAG',
then E is said to be "nonlocal" {see 5.2.3.2.b};

3 . 3 . 2 .

b) {{Append to "Case C"}}
If not all of the descriptors of V 1 V m are identical, the
recovery action is as follows:

• let U be some multlple value of the mode specified by []
rows {see i0.2.3.1.a} with the descriptor ((l,m)) and such
that, for i - I, m, the element selected by the index
(I) is some multiple value with a descriptor identical to
that of Vi;
• the routine display error recovery {I0.2.5.k) is called
with the {parameter} values U and n, where n is the number of
pairs in the descriptor of {say} V I.

4.1.1.

A) C~ON :: ... ; EXCEPTION.

4.8.1.

F) QUALITY :: ... ; PROCEDURE EXCEPTION.

4.10. Exceptions and handlers

CAn exception is a condition, discovered by implementation or by the
user program, that requires some action depending on the current environ.
The action has the form of calling some routine. An exceptlon-deflnltlon
introduces a new kind of exception and specifies the mode of the routine to
be called for this exception. A handler-deflnltlon specifies the particular
routine to be used for this exception during the lifetime of the current
environ, except for derived environs that may specify their own routines
for the same exception. The handler-defining-identlfier of a
handler-deflnltlon is treated as an exceptlon-applled-ldentlfler that must
identify the exception°deflnlng-ldentlfler of the respective
exception-deflnltion. There are no handler-applied-identifiers.}

4.10.I. Syntax

a) NEST EXCEPTION declaration of DECS{41a} :
EXCEPTION{94f} token,

NEST EXCEPTION Joined definition of DECS{41b,c}.

b) NEST e x c e p t i o n d e f i n i t i o n of PROCEDURE e x c e p t i o n TAG{41c} :
formal PROCEDURE NEST plan{46p},

PROCEDURE exception NEST defining identifier with TAG{48a}.

AB 52p.18

c) NEST h a n d l e r d e f i n i t i o n o f PROCEDURE h a n d l e r TAC{41c} :
where PROCEDURE exception TAG identified in NEST{72a},

PROCEDURE handier NEST defining identifier with TAG{48a),
colon{94f} token, PROCEDURE NEST eource{521c}.

{Examples:
a) excevtion (real) void invalid arEument •

o~ invalid argument: (real x) void : finish
b) (real) void invalid arEument
c) invalid arEument: (real x) vo$~ : finish }

4.10.2. Semantics

a) The elaboration of an exceptlon-declaratlon {involves no action, yields
no value and} is completed.

b) A handler-declaration D in an environ E is elaborated as follows:

• the constituent sources of D are elaborated in E collaterally;
For each constituent handler-deflnitlon DI of D

• let V be the yield of the source of Di;
• let X {a scene composed from an exceptlon-deflnltlon} be the yield of
an exceptlon-applled-ldentlfier akin to the handler-defining-identlfier
of DI, in E;
• V is made to handle X inside the locale of E.

5.1.

D) PRIMARY :: ... ; exception call{545a} coercee.

5.2.1.2.b

b) {{insert before "Case A")}
If N is nll the recovery action is a calling of nil error recovery
{10.2.5.1};

If W is newer is scope that N the recovery action is a calling of scope
error recovery {i0.2.5.m};

{{append to "Case B"}}
If the descriptors of W and V are not identical the recovery action is
as follows: °

• let n be the number of pairs in the descriptor of W;
• let i be some integer such that 1 < i < n and the i-th pairs in
the descriptors of W and V are not identical;
• the routine assiKnment error recovery {I0.2.5.h} is called with
{parameter} values N, W, n, i;

5.3.1.2.

{{replace .~ by}}
• it is required that V {if it is a name} be not nil, the recovery action
being a calling of nil error recovery {I0.2.5.!};

5.3.2.2.

a) {{replace by;}
a) The yield W of a slice S is determined in the following steps=

AB 52p.19

Step I:
• let V and (I 1 , In) be the {collateral} yields of the PRIMARY of
S and of the indexer {b} of S;
• it is required that V {if it is a name} be not nil, the recovery
action being a calling of nil error recovery {10.2.5.1};
• let ((rl,Sl) (rn,Sn)) be the descriptor of V or of the value
referred to by V;

Step 2: For i - 1 n
Case A: I i is an integer:

• it is required that r I ~ I i ~ si;
Case B: I i is some triplet (l,u,l'):

• let L be r i if 1 is absent, and be 1 otherwise;
• let U be s i if u is absent, and be u otherwise;
• it is required that r i ~ L and U ~ s i ;
• I i i s r e p l a c e d b y (L , U , i ') ;

The r e c o v e r y a c t i o n f o r t h i s s t e p i s a s f o l l o w s :
• l e t i a n d C b e some n u m b e r s s u c h t h a t 1 < i < n a n d e i t h e r

C a s e A l : I i i s a n i n t e g e r , I i < r i o r I i > s i , a n d C - I i ;
o r

Case BI: I i is some triplet (l,u,l'), as possibly modified
by previous steps, 1 is not absent, 1 < r i and C - I; or

Case B2: I i is some triplet (l,u,l'), as possibly modified
by previous steps, u is not absent, u > s I and C - u;

• let R be the routine name bound error recovery {i0.2.5.J}, if V
is a name, and the routine bound error recovery {I0.2.5.i}
otherwise;
• let C' be the yield of calling R with {parameter} values V, n, i
and C;
• for the case Ai: I i is replaced by C';
• for the case BI: 1 of I i is replaced by C';
• for the case B2: u of I i is replaced by C';
• Step 2 is taken again;

Step 3: For i - 1 n,
If I i is some triplet (1,u,1'),

• let D be 0 if I' is absent, and be I-i' otherwise;
{D is the amount to be substracted from 1 in order to get the
revised lower bound;}
• i' is replaced by D;

Spep 4:

• W is the value selected in {2.1.3.4.a,g,i} or the name generated from
(2.1.3.4.J} V by (I 1 , In).

5.4.5. Exception calls

CAn exception-call serves to raise an exception and thus to call a

routine assigned to handle this exception in the current environ. An
exceptlon-call may supply parameters for this routine. The handling routine
is searched for, starting from the current environ throughout the environs
with older scopes except for the case when during the elaboration of an
exceptlon-call the same exception is raised again. In the latter case the
inner exeeptlon-call does not use the handler found for the outer
exceptlon-call, and the search for the handler continues from the environ
with the next older scope than that of the environ with the locale
containing the first handler. In some programming languages a similar
process is termed exception propagation.}

I

5.4.5.1. Syntax

AB 52p.20

a) MOID NEST e x c e p t i o n call{5D} :
r a i s e t o k e n { 9 ~ f } o p t i o n ,

p r o c e d u r e PARAMETY y i e l d i n 8 MOID e x c e p t i o n a p p l i e d i d e n t i f i e r
w i t h TAG(48b} ,
NEST p a r a m e t r i z a t i o n PARAMETY{b,e}.

b) NEST parametrization with PARAMETERS{a} :
actual NEST PARAMETERS{543b,c} brief pack.

c) NEST p a r a m e t r i z a t i o n { a } : EMPTY.

{Examples:
a) raise Invalid arEumenC (x) }

5.4.5.2. Semantics

a) The y i e l d W o f a n e x c e p t i o n - c a l l Y, i n a n e n v i r o n E, i s d e t e r m i n e d a s
follows :
• let X Ca scene composed from an exceptlon-deflnitlon} be the yield of the
exceptlon-applled-ldentifler of Y, in E;
• let H and F be, respectively, the handler and the handling environ {b}
for X in E;

• let E1 be the new environ established {locally, see 3.2.2.b} around E; E1
is said to be connected to F by means of X;

• let Vi, V n be the {collateral} yields of the constituent
actual-parameters of Y, if any, in El;
• W is the yield of the calling {5.4.3.2.b} of H in El, possibly with Vi,

. . . . Vn;
• i t i s r e q u i r e d t h a t W b e n o t n e w e r i n s c o p e t h a n E, t h e r e c o v e r y a c t i o n
being a calling of scope error recovery {I0.2.5.m}.

b) The handler H and the handling environ F for a scene X in an environ E
are determined as follows:

• it is required that E be not older in scope that the environ of X {for,
otherwise, no handler can be found}, the recovery action being a calling of
Eeneral exception recovery {10.2.5.o};
If there is a value R which handles X inside the locale of E
then H is R and F is E;
otherwise,

• let E1 be the reference environ {c} for X in E;
• let E2 be the environ upon which E1 is established {3.2.2.b};
• H and F are the handler and the handling environ for X in E2.

c) The reference environ F for a scene X in an environ E is determined as
follows:
If E is connected by means of X to another environ E1
then F is El;
otherwise, F is E.

6.1.1.

F) MORF : : . . . ; NEST e x c e p t i o n c a l l .

6.2 .2 .

{ { r e p l a c e "2 by}}
• i t i s r e q u i r e d t h a t N b e n o t n i l , t h e r e c o v e r y a c t i o n b e i n g a c a l l i n g o f
nil error recovery {i0.2.5.1};

52p.21

7.1.1.

c) WHETHER QUALITY1 TAXI i n d e p e n d e n t QUALITY2 TAX2{a ,48a ,c ,72a} :

where (TAXI) is (TAX2) and (TAXl) is (TAG),
where (QUALITY1) is (PROCEDURE1 EXCEPTION1) and

(QUALITY2) i s (PROCEDURE2 EXCEPTION2),
WHETHER (EXCEPTION1 EXCEPTION2) is (exception handler) or

(EXCEPTION1 EXCEPTION2) is (handler exception).

7.2.1.

c) WHETHER QUALITY1 TAX r e s i d e s i n QUALITY2 TAX{a,b,48d} :
• . ° ;

whore (QUALITY) i s (PROCEDURE1 EXCEPTION) a n d
(PROCEDURE2 EXCEPTION),

WHETHER PROCEDURE1 e q u i v a l e n t PROCEDURE2{73a}.

(@JALITY2) i s

9 . 4 . 1 .

f) {{append})
e x c e p t i o n symbol
h a n d l e r symbol
r a i s e symbol

exceD rio n

P~i
raise

10.2.1.

v) proc Lint overflow enabled - boo1 : ~ true, if at a condition for
which the recovery action is specified as a call of the routine 'L
int overflow recovery' {10.2.3.13}, the implementation actually
takes this action; false otherwise ~ ;

{{Similarly for L real overflow enabled, L real underflow enabled, Lint
arEument error enabled, L real argument error enabled.}}

w) {{Similarly for assiEnment error enabled {5.2.1.2.b}, bound error
enabled {5.3.2.2.a}, row display error enabled {3.3.2.b}, nil error
enabled {5.2.1.2.b, 5.3.1.2, 5.3.2.2.a, 6.2.2}, scope error enabled
{3.2.2.a, 5.2.1.2.b, 5.4.5.2.a}, deadlock enabled {i0.2.4.d}, time
exhaustion enabled {2.1.4.3.1}, space exhaustion enabled {2.1.4.3.i}.
}}

10.2.3.13. Recovery actions for standard operators and functions

For cases when operators and functions of the section 10.2.3 do not
give a meaningful result recovery actions are defined as callings of
routines from i0.2.5.g.

The routine L int overflow recovery (L real overflow recovery) is
called on a failure when it is expected that a similar computation could be
successful in another implementation with a greater value of L max int (L
max real).

The routine L underflow recovery is called on a failure caused by the
yield (of the mode L real) of an operator or function being too small to be
represented (within the accuracy implied by the value of L small real) by
the underlying hardware.

The routine L int argument error recovery (L real argument error
recovery) is called on a failure with a {parameter} value X of the mode L

AB 52p.22

(2 real~ when this value has been used as the value of an
actual-parameter or operand amd the failure is due to the fact that the
result is not mathematically defined for this value.

10.2.4.
d) {{extend the pseudo-comment}}

; if all processes descended from the
partlcular-program have been so halted end
none of then is resumed the further
elaboration is undefined, with the recovery
action defined as a callin E of 'deadlock
recovery' {I0.2.5.n} with the yield of
'edsEer' (as a parameter value}

10.2.5. Standard exceptions and recovery routines

a) exceotlo~ void Lint overflow,
void L real overflow,
void L underflow,
(L~) void Lint arEument error,
(2 real) void L real arEument error ;

b) excevtion (~ void assiEnment error,
(.JJl.~, ~.Qd~i[t.~_) v o i d bound e r r o r ,
void row display error,
void nll error,
void scope error,
(soma) void deadlock,
void Eeneral exception ;

{Eeneral exception is raised when no handler is found for some raised
exception.}

c) exceotion void time exhaustion,
void space exhaustion,
void termination,
void ~ immediate termination ;

{see 10.5.1.k}
{The termination exception is raised in cases of irrecoverable errors

in order to give the programmer an opportunity to secure necessary
closedown actions by defining a handler for this exception in some
environs. But it is expected that the elaboration of the handling routine
will end with raising the same exception again in order to secure closedown
actions in older environs.}

d) mode ~ refrows - ~ an actual-declarer specifyin E a mode united from
{2.1.3.6.a} a sufficient set of modes each of which begins with
'reference to row' or 'reference to flexible row' K ;

e) excevtion rows row specimen,
rows destination specimen,
[] rows row specimen list,
(refrows) bool is slice of,
"n~ dimension, bool isname ;

{These exceptions are used in some recovery routines for other
exceptions.}

f) proG terminate - void :
(~ some system action helpin E to identify the current environ ~;
raise termination;
raise immediate termination) ;

AB 52p. 23

oroc ~ Lint overflow recovery - void :
(raise LInt overflow; terminate),

L real overflow recovery - void :
(raise L real Overflow; terminate),

L underflow recovery- void :
(raiseL underflow; tezTalnate),

; LInt argument error recovery - (~ ~ i) void :
(raise Lint argument error (i); terminate),

; L real argument error recovery - 42 real r) void :
(raise L real argument error (r); terminate) ;

h) Droc ~ assignment error recovery -
(refrows destination, rows source, iB_~n, i) vo~4 :

(.qll destlnation specimen: rows :
some multiple value with a descriptor identical

to that of the value referred to by the name
ylelded by 'destination' ~

row specimen: rows :
some multiple value with a descriptor identical

to that of the value yielded by 'source' ~,
is slice of: (refrows rr) bool :

~ the name yielded by 'rr' has not been
generated {2.1.3.4.J,i} from another name

then ~ true, if every subname of the name yielded
by 'destination' is a subname of the name
yielded by 'rr', or can be obtained from such
subname by one of more selections by 'TAG'
(2.1.3.3.e);
false otherwise

else skis

dimension: ~ : n;
raise assignment error (i);
terminate) ;

l) Droc ~ bound error recovery -
(rows value, i~n, i , bound) ~ :

(g~ row spec imen: rows :
some m u l t i p l e v a l u e w i t h a d e s c r i p t o r i d e n t i c a l

tO that of the yield of 'value' ~,
is slice of: (refrows rr) bool : skip,
dimension: n~ : n,
isname: bool : false;

b :- bound;
raise bound error (i, b);
b) .;

J) Droc ~ name bound error recovery -
(refrows name, ~_~ n, i, bound) "n~ :

(g_~ row specimen: rows :
some multiple value with a descriptor identical

to that of the value referred to by the name
yielded by 'name' ~,

is slice of: (refrows rr) bOOS :
~ the name yielded by 'rr' has not been
generated {2.1.3.4.j,i) from another name

then ~ true, if every subname of the name yielded
by 'name' is a subname of the name yielded by
'rr', or can be obtained from such subname by

k)

I)

m)

n)

o)

AB 52p.24

one or more s e l e c t i o n s by 'TAG' {2.1.3.3.e};
f a l s e o t h e r w i s e

e l s e s k i s
~.,L,

d imens ion : ~ : n ,
Isname: boo l : t r u e :

~1~ b : - bound;
raise bound error (i, b);
b) ;

Droc ~ row display error recovery-
([] rows specimen, jJl~ n) void :

(gll row specimen list: [] rows : specimen,
dimension: ~ : n;

raise row display error;
terminate) ;

Droc ~ nil error recovery - void :
(raise nil error; terminate) ;

oroc ~ scope error recovery - void :
(raise scope error; terminate) ;

P~Oq ~ deadlock recovery - (sema s) void :
(raise deadlock (s); terminate) ;

excevtion boo1 ~ general exception recurslon ;
{see 10.5.1.1}

oroc ? general exception recovery -- vO~ :
general exception recursion

then raise immediate termination
else gll general exception recursion: bool : true:

t ermina t e
!l;

p) vroc ~ time exhaustion recovery - void :
(raise time exhaustion; terminate).;

q) PrO¢ ~ space exhaustion recovery- void :
(raise space exhaustion; terminate) ;

10.3.1.3.

{{A replacement for part of a sentence in I0.3.1.3.cc}}
If the event routine returns false another attempt is taken to recover by
raising the corresponding exception. This results in calllng another
routine with a function similar to that of the event routine but attached
to the current environ rather than to the current file. If this routine
returns false too, then the system continues with its default action.

t) exceotion (r_~_~ file) bool logical file end,
(r_~ffile) bool physical file end,
(r_~[file) bool page end,
(r_~[file) bool line end,
(rj~ffile) bool format end,
(r_~ffile) bool value error,
(r_~f file, E_~f char) bool char error ;

AB 52p. 25

u) vroc ~ logical flle end repaired - (I.~[file f) bool :
(logical file mended ~ f) (f)

then true
else raise logical flle end (f)
~p

physical file end repaired - (~ file f) bool :
(physical flle mended ~ f) (f)

then true
else raise physical file end (f)

page end repaired - (I~ file f) bool :
(page mended ~ f) (f)

then true
else raise page end (f)

line end repaired - (~ file f) bool :
Lf (llne mended ~ f) (f)
then true
else raise line end (f)
ii,

format end repaired - (~fi~ file f) bool :
(format mended ~ f) (f)

then true
else raise format end (f)

value error repaired - (r~ fil9 f) bool :
(value error mended ~ f) (f)

then true
else rais@ value error (f)

char error repaired - (~ file f, ~ char c) bool :
(char error mended ~ f) (f, c)

then true
else raise char error (f, c)

{{A replacement for the appropriate sentence in 10.3.1.6.dd))
... The routine logical file end repaired, physical file end repaired, page
end repaired or line end repaired is therefore called as appropriate. . ..

{ {A replacement for the appropriate phrases in I0.3.3 and
I0.3.3.2.hh. (ii) } }

. . . the routine line end repaired (or, where appropriate, page end ,
repaired, physical file end repaired or logical file end repaired) ...

{{Similarly in 10.3.3,2, for the routines char error repaired (cc, dd),
line end repaired, page end repaired, physical file end repaired, logical
file end repaired (all in hh); also in 10.3.4.1.1, for the routines format
end repaired (gg), value error repaired (hh, li), char error repaired (ii);
also for the routine value error repaired in 10.3.4.8.1.aa,bb,dd,ee and
10.3.4.10.1.aa} }

52p.26

{{Throughout a l l the forms c o n t a i n e d i n s e c t i o n 10.3 the f o l l o w i n g
changes are to be made:

(logical file mended~f) ~ logical file end repaired
(physical file mended~f) ~ physical flle end repaired
(page mended~ f) ~ ~age end repaired
(line mended ~ f) ~ line end repaired
(format mended ~ f) ~ for~uat end repaired
(value error mended ~ f) ~ value error repaired
(char error mended ~ f) ~ char error repaired
}}

10.5.1.

J)

k)

1)

m)

termlnatlon: vold : stop ;

~I immediate termination: vold : stop ;

~.~ general exception recurslon: bool : false ;

logical flle end: (I£f file f) bool : false,
physical file end: (I.~f file f) bool : false,
page end: (I~ flle f) bool : false,
line end: (Erie file f) bool : false,
format end: (I_~ file f) bool : false,
value error: (r.~ file f) bool : false,
char error: (I~ file f, I_~ char c) bool : false ;

AB 52p.27

AB52.4.3 A Browse throu2h some Early BulletlDs ,

by C. H. Lindsey

(University of Manchester)

After IFIP WG2.1 had been formed (initially from the original authors of ALGOL
60) a decision was taken in March 1964 to revive the ALGOL Bulletin, which had lain
dormant since the publication of the Revised Report on the Algorithmic Language
ALGOL 60 in 1962. Fraser Duncan was appointed as Editor, and AB16 duly appeared in
May 1964. As present editor of the AB, I have no access to any issues prior to ABI6,
but I have managed to piece together a complete set since that date, and they form a
fascinating account of what was going on in those years. The following article
surveys some of the material published between 1964 and 1972.

ALGOL 60

19"-2 Of 6_ course, ALGOL 60 was not frozen with the publication of the Revised Report in
Much remained to be done as regards subsets, I-O, problems in the Report, and

in Just trying to understand the beast that had been created. It should be realised
that many features in ALGOL 60 seem to have "Just happened" and their ramifications
(even their implementations) only became apparent as time went on. As John McCarthy
said on one occasion, the authors of the original Report were all gentlemen, and did
not propose any feature for inclusion that they did not see how to implement
sensibly. It was the interactions between the various features which were not so
well understood at the time.

Block Structure and Environments,

One of the novel features of ALGOL 60 was, of course, block structure, and the
idea that procedures lived in definite environments. This was reasonably well
understood by some people by 1964, but not always by implementors. Knuth's famous
test case "Man or boy?" appeared in [AB17.2.4] (July 1964 - note how close together
issues were in those days). Originally, of course, it was written in ALGOL 60 and
used call-by-name, but here it is in ALGOL 68.

BEGIN

PROC a - (INT k, PRDC INT xl, x2, x3, x4, xS) INT:
BEGIN

LOG INT kk :- k;
PROC b - INT:

BEGIN
kk -:- 1;
a(kk, b, xl, x2, x3, x4)

END;
IF kk<-O
THEN x4 + x5
ELSE b
FI

END;

print(a(lO, INT: I, INT: -1, INT: -I, INT: i, INT: O)
END

The point about this program, of course, is that many incarnations of b are created
in many environments, each of which is able to decrement the particular kk in the
environment where is was created. Readers are advised NOT to try computing the
result by hand. Knuth tried and obtained the result -121, which is wrong (at the
time, he had broken his right wrist so, as he said [AB19.2.3.4], the calculations
were done left handed - but he did then give a formula from which the corect result
of any example could be calculated). No wonder he got it wrong! This case recurses

52p.28

t o a dep th o f 512 i n a and 511 i n b. The c o r r e c t r e s u l t s f o r v a r i o u s v a l u e s o f k,
computed on t he E l e c t r o l o g i c a X l a t t he ~ t h e ~ t t s c h C e n t z ~ appeared i n [~ 1 8 . 2 . 5] .

k 0 1 2 3 4 5 6 7 8 9 (lO Ii)
A 1 0 -2 0 1 0 1 -I -I0 -30 (-67 -138)

The X1 actually ran out of its memory (12K of 27-bit words) on k-10 (memory doubles
for each increment of k) so the result for k-10 was from a machine at Kiel and for
k-ll on a KDF9 using the Kidsgrove compiler, which took 12 seconds [AB19.2.3.1].
Other times reported were 1.75 seconds on the ICL Atlas (k-ll) and times of 20 and
80 minutes on two other machines whose anonymity the Editor agreed to respect
[AB20.2.4]. By way of comparison I Just ran a PASCAL version of k-ll on a SUN3, and
it took 0.027 seconds.

As a postcript to this whole episode, it may be noted that a couple of years
later Bekic was able to use this example to persuade the designers of PL/I (who
really did not understand environments) to mend their ways.

As an a i d t o u n d e r s t a n d i n g t h o s e e n v i r o n m e n t s , a p i e c e o f S c i e n c e F i c t i o n
a p p e a r e d i n [AB17.2 .5] , w r i t t e n by W. H. Eurge , Manager o f Sys tems P r o g r a ~ i n g
R e s e a r c h a t t h e Univac D i v i s i o n o f S p e r r y Rand, New York. I t h i n k i t i s wor th
r e p r o d u c i n g i t i n f u l l .

THE ALGOL MEN

They didn't know where they came from when they were born, they called it "Outside".
They did not know when s new person would appear, but noticed that they only
appeared when space was available. All people were born with the same amount of
experience and property which they called an "environment". When they died, they
disappeared, and so did their environment.

There was a ritual called "enter block" which they could perform in order to use a
new body. They stored what was left of the old body and its environment secretly, so
that no one could interfere with it, and lived their life in a new body. The new
body came with a certain amount of experience and property called its "locals". This
was added to the environment of the old body to produce an environment for life in
the new body.

When an incarnate body died, there was another ritual called "block exit" in which
the old body was disinterred, and life continued in this body where it had left off.
The incarnated body disappeared together with its locals.

The process of incarnation was difficult and required much concentration. There were
many people who were born and died without achieving it. These were called
"FORTRANS" or "COBOLS". Some of these were compensated for this by havin E other
abilities, for instance, the FORTRANS could run fast and the COBOLS could describe
data by a carefully guarded technique only known to them.

Some people who were lucky found that amen E their possessions in their environment
were bodies called "procedure bodies". They could live in these at will by usin E the
"enter block" ritual. It was possible to pass property on to be used in their lives
as procedure bodies. This property was called an "argument".

It required considerable trainin E to keep track of all the interred bodies, and to
choose the correct one to reincarnate by the block exit ritual. This was made even
more difficult by the existence of so-called "recursive" procedure bodies or
DoppelganEers. These bodies found themselves on their own environment. It was clear
that when a body incarnated itself, it could not both bury and use its body (the
technique of copyin E bodies was known but its use was deprecated because it wasted
space) and so instead of burying the body, they buried information which said where
it was.

52p.29

When a person got tired of his present llfe and hankered after one of his previous
incarnations, he could invoke a "~o to" ritual which would take him back to one of
his prevlously stored bodies. This would disinter and reactivate a body which was
not necessarily the last one used. This process invariably lost all the intervening
bodies. This ~o to ritual occasionally~ surprised people. They would enter a
procedure body in order to gain something of value, and find themselves projected by
a Eo to into a previous incarnation, instead.

The ALGOL Men were not only able to change their immediate anvironment or locals but
could also change the environments of their interred bodies. Some people thought it
was sacrilege to interfere wlth the possessions of their interred bodies (or non
locals), especially when living in procedure bodies. Others thought this practice
useful, and used it.

It seemed that the course of a person's life was mapped out for him in advance,
although they couldn't tell for sure. Some said that they must do the things they
did in a fixed order, others said that the order was not fixed. Occasionally some of
the latter found that changing the order made them do things they didn't intend to.
Others argued that they had free will because they could make decisions. Although
they tried hard, they could never manufacture a new body. The bodies and
envlronmants which appeared seamed to have been lying dormant in their genes,
waiting to be activated.

The ALGOL Men had a great book which contalned guidance called the "[Revised] Report
on the Algorithmic Language ALGOL 60". This contained rules and parables which
stated how they should behave, and commandmants which prohibited certain behaviour.
The interpretation of certain sections of this Report was the subject of much
scholarly and theological arEumant. Part of the Report was written in a peculiar
language called "Backus normal form". No one had ever deciphered this part, but it
seemed to be explaining how their bodies were constructed. The Report prescribed
that if certain rules of behaviour were disobeyed then the offender would be put
into a state called "undefined" or "hell". There were legends about certain
adventurous spirits who, because they possessed some defect of character, had tried
these prescribed acts and as a result had vanished together with all their interred
bodles and possessions.

People who were deep in incarnations used a lot of space to hold their bodies and
possessions and as a consequence people were taxed on how deep they were. Sometimes
people would wish to incarnate but find they could not because there was no space
left on the world. They had to go into a state of "suspended animation" waiting for
space to become available.

There were some people who lived the same parts of their life over and over again.
Some of these were harmless and were called "ghosts". There seemed to be no way of
finding out whether they would ever break out of their loop or not. Others were
dangerous to the community and were called "space thieves". For these each new life
cycle produced new possessions and these possessions threatened to overrun the
world. A rule was introduced to detect space thieves and throw them Outside. This
was called a "debuggin E rule". There was a similar rule against "body snatching".
This rule said that if any person interfered with the interred bodies or property of
another then both would be thrown Outside. A person was said to be "running wild"
when he did this. This was unfortunate for the victim but his removal was a safety
precaution. Since he had been interfered with, there was the chance that he too
might run wild. Later, special locks were provided for the graves called "lockouts".
These locks could only be opened by the owner. This prevented the whole population
from running wild.

A movement sprang up to hoard property in a body's life so that it should be
available if that life were to be re-entered. This hoarded property was called the
"9.~I" property of the body. There was some confusion about the precise procedure to
be follwed when hoarding and there was little guidance in the Report about how to do

AB 52p.30

this. Some people, because they used incorrect methods, produced hoards which they
never used again.

There were tales that certain people, called "mystics", were able to obtain
information from Outside to guide thelr lives, and that there were poep~e who could
transmit information to the Outside by prayer. The Report, however, does not mention
this. Some people found themselves incarnated into another form when they used what
are called "non-ALGOL code" procedure bodies. Although this is mentioned in the
Report, no details are givan, and people were constantly surprised by the forms they
took.

It is a shame that this brlef account cannot include descriptions of other tribes
similar to the ALGOL Men such as the Macro People who constructed bodies (or
Frankensteins) and activated them, the Ipulvees who listed their property and had an
oracle called the Interpreter, and the Lisps who constructed magnlflcent structures
and took them to pieces, and had a strong garbage collectors' union.

The tragedy of the ALGOL Man was that they could not communicate with one another
nor could they store chines which would be useful to future ganerations. All man
were born equal but did different things with their lives. When a man died he
vanished, left nothing, and released the space he occupied. It is clear that what
these people needed was the ability to store chines produced by people in their
lives in a library so that other people could make use of them. It is said that the
FORTRANS and COBOLS have a tradition of this sort.

ALGOL 60 Develovments.

The two great issues with regard to ALGOL 60 were Subsets, and I-O.

The "Report on SUBSET ALGOL 60 (IFIP)" appeared in ABI6.3.1.1, complete with
approval from the Coucil of IFIF and all the usual trimmings including permission to
reproduce, but only in full. The Subset was in fact a dramatic piece of surgery, and
a less drastic subset was produced by ECMA, the European Computer Manufacturers'
Association (historically, the ECMA subset actually came before the IFIF one,
however IFIP < ECMA < full ALGOL 60). For the ECMA subset, and a discussion of the
whole issue, see [AB20.2.5] (July 1965).

F i r s t l y , h e r e a r e t he r e s t r i c t i o n s common to b o t h s u b s e t s :
d i s a p p e a r a n c e o f2@/ l
d i s a p p e a r a n c e o f i n t e g e r l a b e l s
< fo rma l p a r a m e t e r > s t o have t h e i r t y p e s s p e c i f i e d
t y p e s o f a l l e x p r e s s i o n s t o be c o m p i l e - t i m e d e t e r m i n a b l e
no lower-case letters
So to an undefined <switch designator> to be undefined, not a dummy

Those all seem quite innocuous, but the next two will be surprising to modern
readers, and reflect the fact that many compilers written up to that time had taken
these shortcuts.

no recursion
only the first 6 characters of an identifier to be significant

Secondly, here are the additional restrictions in the IFIP subset. Some of these
were made for reasons of tidiness rather than difficulty of implementation.

an identifier may not appear twice in a <formal parameter list>
no ~ a[i] : d_a ...
no ~o to ~ B ~ L1 else L2 (and similarly in <swltch-list>s)
no switch s :- Li, t[i] (where t is another switch)
no raising of integers to -ve powers
no integer division
actual-parameters called by name to be variables (but, not only does this

prevent jensen(i, iT2), it also prevents read(a[i]))
functions to have no side effects

AB 52p.31

Note the passion people had in those days for efficient implementation of
extraordinary mo tQ-like constructs which would never even be admitted into a modern
language. Note also that many of these restrictions were rejected by ECMA because
they eliminated more than they strictly needed to.

The "Report on Input-Output Procedures for ALGOL 60" appeared at the same time
[AB16.3.1.2]. Its provisions were extremely primitive, but were only intended as a
basis on top of which libraries of more useful facilities could he constructed. The
Report blithely concluded by saying that "WG2.1 does not propose any further means
for Input-output operations". In the meantime, a separate proposal for Input-Output
Conventions in ALGOL 60 had been prepared by an ACM committee chaired by Donald
Knuth and published in CACM Z (1964). This was at the opposite extreme, being
format-based with every possible bell and every possible whistle (anyone wanting to
know whence the formatted transput in ALGOL 68 originated need look no further). Of
course this lead to complaints and counter proposals, including pleas by Naur
[AB19.3.11.2, AB20.3.2.1] and Garwlck [AB19.3.8] to separate number conversion from
the actual I-O and a full-blown 15-page alternative scheme from the IBM Vienna Lab
[AB20.3.5], and a mere II pages from ECMA [AB27.3.1]. A common factor of most of
these proposals, Judging by some of the comments made, seems to have been a lack of
provision for recovery from input errors.

The ALGOL 60 Stander4,

There now commenced that struggle to get ALGOL 60 adopted as an ISO Standard. It
all started in fine style in May 1964 [ABI7.1.1] with a report that ISO/TC97/SC5 had
decided to "proceed immediately with ... an ISO Draft Proposal". This was to include
the Report, the IFIP Subset, both the IFIP and the Knuth I-O, and a hardware
representation. All very straightforward and timely. Of course, we now know with
hindsight that this process was not finally completed until 20 years later. By
October 1964 a First Draft was being clrculated [ABIg. I.3] -- and the ECMA subset had
crept in. After further meetings in September and October 1965 [AB22.2.1], it was
all ready for final approval - bar the hardware representation. After that -
silence[What happened? Apparently, there was a further draft in April 1967 which
was finally approved in Aprll 1968. Next, the text got lost in the ISO system. And
then the text got mangled by ISO bureaucrats who didn't understand what they were
doing, and it was flnally published, complete with omissions and errors, in March
1972. There followed much argument between WG2.1 and ISO which culminated in the
withdrawal of the document in 1976. After that, a mere 8 years to get another
Standard (now based on the Modified ALGOL 60 Report) through the system is neither
here nor there.

ALGOL 60 Trouble Spots,

Of course there were always worries about what the ALGOL 60 Report really meant.
In January 1965 [AB19.3.7], Knuth published his famous "List of the remaining
trouble spots in ALGOL 60" (later published in CACM __i0 October '67), which documents
the well-known problems with regard to such things as numeric labels. It was not
proposed to fix these things at that time (the controversies still raged), but
rather to point out to users features of the langauge to steer clear of. Of course~
this was not the end of the worries. Further worries were reported by gekic
[AB20.3.6] and Medema [AB20.3.7]. In [AB27.2.1] Bryan Higman pointed out the reason
why making the value of the controlled variable undefined on exit from a <for
statement> achieved precisely nothing for the implementor, since its value at the
end of each <for list element> must be defined in case it is needed in the next one,
as in

fo__ E i :-- 1 step 2 until 9, i+1 d__o print(i)

which must clearly print 12 on the last iteration.

AB 52p.32

Miscellany '

Here, from J. Nievergelt [AB31.3.5] is what I regard as the ALGOL 60 equivalent
of the FORTRAN Venus Probe Joke (you know, the one that starts DO i I - 1.2 ...).
The difference between the two following is just one ";" - clearly just a <dummy
statement> which will make no difference to the meaning.

begin Drocedu~ p(k) ; integer k ; k :- I ; ~i~

begin orocedure p(k) ;; integer k ; k :- i ;

It ain't so simple, however. You haven't spotted it? Clue: where does the
declaration of the vrocedure p finish?

A rather unlikely semantic problem was reported in [AB26.1.3]. In England, the
newly installed automatic barriers on railway level crossings were provided with a
warning

"Stop while lights are flashing."

But it seems that the local dialect in parts of Northern England, particularly in
Yorkshire, ascribes to "while" the meaning which the rest of the world understands
by "until", with the obvious possibility of disastrous accidents at level crossings.
The wording on the notices had had to be changed. Many AB readers lived in
Yorkshire, and there were expatriate Yorkshlremen throughout the world, so perhaps
there were problems with the while of ALGOL 60? As a Northener myself (but from
Lancashire rather than Yorkshire) I can assure you that "while" is indeed often used
with an "until" meaning (I even do it myself in the right company), but the
amblgulty can in fact always be resolved by the context.

Another nice touch (with hindsight) was a news item lAB20.1.1] entitled "Release
of syntactic ALGOL compiler for PASCAL". Mystified? Well, this was 1965, and it
seems that Phillps manufactured a machine called "PASCAL" in those days.

Another long-standlng tradition was established in [AB27.3.2] (see also
[AB28.2.5, AB29.2.1]) with a paper by Brian Wichman on "Timing ALGOL Statements".
This was, of course, many years before his invention of the "Whetstone", the systems
compared here being the two KDF9 compilers, the ICL 1905, the Elllott 4120 and 4130,
and the CDC 3600. Timings for x :- yTz ranged'from 99 ~-secs to 47700 ~-secs.

ALGOL X and ALGOL Y,

It was always the intention of WC2.1 to proceed to a more advanced language, and
the first mention of ALGOL X (which eventually became ALGOL 68) and of the mythical
ALGOL Y (originally conceived as a language which could manipulate its own programs,
but in fact degenerating into a collection of features rejected for ALGOL X) was in
a paper entitled "Cleaning Up ALGOL 60" by Duncan and Van Wijngaarden [AB16.3.3]
which proposed a type string, which is reasonable enough, but also a type labe~ and
a removal of the restriction forbidding a go to from outside into a block (clearly,
such things were not considered in the least bit harmful in those days).

It should he noted that it was always the intention in those early days for
ALGOL X to he a strict upwards extension of ALGOL 60. It was only gradually that the
folly of this view became plain.

Features Proposed for ALGOL X.

There followed a long series of wlsh-lists for the new language, of which a long
series of important articles by Tony Hoare will be examined in more detail below. A
long llst by Peter Naur [AB18.3.9] asked for environment enquiries, short and lone
modes, operator-declaratlons, strinms (but crude), yet more labels and switches~

AB 52p.33

non-rectangular arrays (they nearly did make it into ALGOL 68), operators such as
mP.~, ~L~, round, p_~, procedures wlth variable numbers of parameters, a hint of
structs, and [ABig.3.11] a type character coupled with a separation of conversion
from I-O, and a type bits, and [AB22.3.7] a suggestion to replace the ALGOL 60

procedure p(a,b); inteuer a; real b; ... by

vrocedure p(inVeue r a, real b); ...

(I am amazed that such a, now generally taken for granted, feature should have been
so late in appearing). Quite a lot of familiar stuff there! The wish llst of the
ALCOR group [ABI9.1.1] mentioned complex arithmetic, variable precision, strings,
"simultaneous statements", simpler loop-statements, restricted call-by-name,
collateral assignment of array elements, and much else besides. Rutishauser
[AB19.3.10] was asking for elaborate mechanism to denote lists, with associated
features in the for-statement. Van de Laarschot and Nederkorn [AB19.3.2.1] wanted to
ensure that strings would be first class citizens (no length limitations, proper
assignments, etc). Samelson [AB20.3.3] wanted anonymous routines (i.e. k-expressions
or routlne-texts) chiefly so that they could be in-sltu actual-parameters. In
[AB21.3.1] Seegm~ller proposed reference types (principally as an aid to parameter
passing) hut, because coercion had not been invented yet, he needed a special
"undereferenelng" operator ~f. Thus inteuer reference ii; inteser i;

ii :- r~ i {to assign a reference to i}, or ii :- i {to assign the inteuer in
i}. Genuine coercion (or at least the widening coercion as we now know it) came from
DiJkstra [AB21.3.3]. David Hill [AB22.3.9] was pressing for the "operate and
becomes" operators, such as "+:-" (except that they were spelt "+:"). O-J Dahl
[AB24.3.5] and Kr~l [AB25.3.2] made strong pleas for Multl-programmlng (though I
doubt whether the ~ clause of ALGOL 68 was quite what they had in mind).

Tony Hoare's contributions.

A series of articles by Tony Hoare had a great influence on the development of
ALGOL X, and they are worth looking at in more detail.

Case exDresslons (and statements) [AB18.3.7]. These were just like the case-clauses
that eventually got into ALGOL 68, except that the alternatives of the list were
separated by elses and there was no out part (the effect of an out-of-range case
being undefined, even for <case statement>s). The intention was most definitely to
provide an alternative to the ALGOL 60 swltches.

Record handllng [AB21.3.6]. Records were conceived much as the structs in ALGOL 68
to which they gave rise. However, they had three substantial (and deliberate)
restrictions which ALGOL 68 does not impose.

I. Records could only be created, on demand, on the heap. There were to be no
locally declared record variables. Thus there were to be reference variables and
reference fields and these were the sole methods of accessing records.
3. However, reference values could not point to local variables (so that no
scope problems could arise).

2. Records could not have other records as fields (although array fields were
envisaged).

The proposal envisaged both a garbage-collector and a PASCAL-style destroy. There
also provision for references to unions of other types, and a special

construction equivalent to the ALGOL 68 conformity-clause for taking the unions
safely apart. There was further discussion of these ideas in [AB23.3.2] which
included, by way of an example, the earliest publication known to me of Dijkstra's
well-known algorithm for finding the shortest path between two nodes of a graph.

It is interesting to trace the origins of these ideas for records and references to
them. Already, in [AB18.3.12], McCarthy had proposed cartesians (records) and
unions, but no dynamic allocation and no references. The first language really to
provide complex data structures out of records and pointers was Doug Ross' AED-0.
SIMULA 67 also provided much input to Hoare's proposal.

AB 52p.34

It would seem that the concept of reference and its relationship to records,
variables and procedure parameters caused much discussion within the Working Croup
much if it based, so far as I can see, on the difficulties of recognlslng the
underlying fundamentals and inventing suitable terminology for them. A letter from
Doug Ross [AB26.2.2] to Van Wijngaarden illustrates this point. It discusses various
features, most of which I can recognise in ALGOL 68, but I am sure that Doug thought
he was proposing something radically different.

A separate proposal, also contained in Hoare's paper, was for enumeration types (as
now provided in PASCAL, but originally introduced with the word .~_~).

Cleanln2 up the for statemen t [AB21.3.4]. This proposed implicit declaration of the
control variable by its mere mention after a ~_~, it was to behave llke a value
parameter ~so it could nod be assigned to), and the expressions for the initial,
step and final values were to be evaluated only once. This all seems very familiar
today, but the story did not end there. In [A322.3.1] Caller suggested that the for
statement should become an expression, returning the final value of the control
variable (I think I like this), and in [AB25.3.2] David Hill was complaining that
making the control variable an implicit declaration would scupper Jensen's Device.

File oroeesslnu [AB25.3.3]. files were to be ordered sequeces of records, and in its
initial form the proposal provided the effect of the PASCAL file .q~ sometvve.
However, there was also to be provision for different record types within the one
file, and means to locate specific records (and even to store such locations as
fields of other records).

Set maninulatlo D [AB27.3.4]. This proposal was the forerunner of the sets in PASCAL,
it being explicitly envisaged that they would be stored as bit patterns. However, it
went somewhat beyond what eventually appeared in PASCAL, for example there was to be
an operation to iterate through a set, and a shift operator. Hoare's proposal was
roundly crltielsed by Landln [AB27.3.6] because it was too ad hoc - being designed
as a clever way of using bltpatterns rather than an attempt to embody the
mathematical concept of sets. However, the interesting part of Landln's critique was
his (then) novel idea of trying to identify types with the operators that could be
applied to them, complete with an axiomatic description of the type inteuer.

Subscrint oDtimisatlon and subscript ehe¢~in~ [AB29.3.6]. The intention was to
allow, for some array A,

foe a in A do sum :- sum+a;

The motivation was to optlmise the efficiency of loops that scanned arrays and, in
particular, to make it impossible for subscript bound errors to arise, at the same
time eliminating (or much reducing) the necessity for such things to be checked at
run time.

Tex t v r o c e s s i n ~ [AB29.3 .7] . I do n o t u n d e r s d t a n d t h i s p r o p o s a l . I t s u g g e s t s a t ype
character and the handling of textual data in character arrays, but these are
conceived as of fixed size and their is no discussion of any need for strings of
arbitrary length such as the real world is full of. There are proposals for slicing
such arrays (just as in ALGOL 68), and also for fixed collectlons of characters llke
the ALGOL 68 type bytes. All this seems to be so far behind ALGOL 68 as it then
stood (MR93 had been published and Tony was well aware of it) that, even though he
disliked ALGOL 68, the lack of discussion - critical if necessary - of these issues
I find very odd.

AB 52p.35

The History of ALGOL X,

The Early Days.

Work on ALGOL X started in earnest at the Princeton meeting of WG2.1 in May 1965
[AB21.1.1]. strings were seen as important, but a small majority preferred to
compose them out of characters using existing data structuring tools. Trees were
envisaged (but note that this was before Hoare's Records paper). There was
considerable influence from Wirth's Euler language, but still confusion about
parameter passing. Strong typing was clearly envisaged. Draft proposals for a full
language were solicited for the next meeting.

At the next meeting in October 1965 at St Pierre de Chartreuse [see excellent
report by Mike Woodger in AB22.3.10], there were three such drafts on the table, by
Wirth (with extensive comments by Hoare incorporating his Record Handling), by
Seegm~11er, and by Van Wijngaarden - the famous "Orthogonal design and description
of a formal language" wherein W-grammars first appeared (did you know that
metanotions originally consisted of just one capital letter and that there were
exactly 26 of them). The four of them (Van WiJngaarden, Wirth, Seegm~ller and Hoare)
were commissioned "to agree among themselves" and to produce a proposal for "final
approval" (sic) at the following meeting. BUT, it had also been decided that Van
WiJngaerden's method of description should be used, so that he would get to write
the text. Nevertheless, although Van Wijngaarden's proposal was more concerned with
method of description than with language content, it seems that the Wlrth/Hoare
proposal had been effectively rejected and permission was given for it to published
independently, which was done in CACM in June 1966, together with the remark that it
had been felt that "the report did not represent a sufficient advance on Algol 60,
either in its manner of language definition or in the content of the language
itself". The CACM version did, however, use just a little bit of 2-level grammar,
with acknmowledgment to Van WiJngaarden's document.

Decisions made at this meeting were
labeZ variables were out. strings (but maybe with declared maximum length)
complex, bits and various 1on~ modes were in.
Hoare's Records were accepted.
Row-dlsplays of some form were envisaged.
Collateral elaboration to discourage side effects.
Parrellel-clauses (but no semaphores as yet).
Blocks (containing declarations and statements) could stand as expressions,

returning their last expression (or the one before a completion-symbol,
which was "." in those days rather than the current exit).

Identifiers could represent values (if declared va___!) or locations (1oc) or
variables (var).

Condltlonal-expressions and Hoare's case-expressions.
The control variable of a fo__E to be implicitly declared and constant, step and

until parts to be elaborated only once, and while forms to have no control
variable at all.

I-O transmission and data conversion to be separated.
Call by value and by name (but name calls to he indicated at point of call also,

and actuals of kind lo___c to be passed by reference). Confused? Try the
following example:
real va__~ f (real vai x, real Ioc y, real vat z) - <expression>;
This defines a function whose calls may supply:

an integer or real expression for x (input),
a real or complex variable for y (output),
hut only a real variable for z.

Still confused?

The Wirth/Hoare language, as described in the CACM article, was in due course
i m p l e m e n t e d o n a n IBM 360 b y W i r t h , u n d e r t h e name "ALGOL W", d u r i n g a v i s i t t o
Stanford in 1966, and in [AB24.3.3] he describes a few refinements of th~nguage

AB 52p.36

that he found necessary. See also [AB26.3.4] for comments on this language by the
Japanese ALGOL Working Group. The Japanese were also active in language design, and
produced their own "ALGOL N" [AB30.3.2], a simplified form of ALGOL 68 with a
simplified method of description.

In the next issue [AB23.1.1] it was merely announced that the next meeting of
the Working Group had been postponed from April 1966 to October 1966 "to allow the
sub-commlttee ... more time for their work". Apparently, some interim document was
produced at that meeting, and also a substantial proposal for transput [AB25.1.1].
It was confidently predicted that the main business of the following meeting, in May
1967, would be ALGOL Y. The next news lAB25.0.1] In March 1967 apologlsed for the
fact that the draft report on the new language did not accompany that issue. "The
work at Amsterdam, which includes implementation studies, has taken longer than
anticipated." It would be distributed direct from Amsterdam shortly and there would
be time for readers to comment before the meeting in September.

Came August and AB2~, but still no Draft Report. It seems that at the May
meeting, despite the confident predictions, "Discussion of ALGOL Y was rather
limited", although there was still no hint of the furore that was to come. The
September meeting had been postponed until "not less than 3~ months after
distribution of the draft". In the event the Draft, the (in)famous MR93, did not
appear until February 1968. Comments were invited [AB27.1.1] and were to be
considered by the WG at Its meeting in June. The possibility was still being
envisaged of obtaining final IFIP approval of the document at the IFIP Congress in
Edinburgh in August. And at the end of AB27 appeared the first example of a long
tradition of errata to the Draft Report - a mere 9 pages of them.

The Troubles,

The a p p e a r a n c e o f MR93 w a s t h e c a u s e o f much s h o c k , h o r r o r a n d d i s s e n t , e v e n
(p e r h a p s e s p e c i a l l y) a m o n g s t t h e m e m b e r s h i p o f WG2.1. G e n e r a l l y , o n l y t h o s e members
who h a d b e e n p r e s e n t a t t h e m e e t i n g s i n O c t o b e r 1966 a n d May 1967 h a d s e e n t h e
e a r l i e r d r a f t s , a n d t h e a b s e n t e e s i n c l u d e d s u c h n o t a b l e n a m e s a s N a u r , D i J k s t r a a n d
G a r w i c k (f o r b e t h m e e t i n g s) a n d H o a r e a n d W o o d g e r (May ' 6 7 o n l y) [A B 2 5 . 1 . 1 ,
A B 2 6 . 1 . 2] . I t was s a i d t h a t t h e new n o t a t i o n f o r t h e gr~mm~r a n d t h e e x c e s s i v e s i z e
o f t h e d o c u m e n t made i t u n r e a d a b l e . H o w e v e r , i t c o u l d b e r e a d a n d u n d e r s t o o d , a s I
demonstrated myself by extracting the underlylng.language from it and serving it up
as "ALGOL 68 with Fewer Tears" [AB28.3.1] - however, I must confess that the task
occupied me fully for 6 man-weeks. "Fewer Tears" was a paper written in the form of
an ALGOL 68 program, and its definitive version can be found in the Computer Journal
!~ 2 May '72.

A small (and stormy) meeting of the Working Group in June 1968 instructed the
authors to undertake considerable revisions to be submitted to the Group for final
acceptance or rejection in December.

Examples of the difficulties which people had with the Report can be found in
various articles. Turskl [AB29.2.4] found inconsistencies in the definition of the
underlying "paper computer". Hoare [AB29.3.4] wanted a more primitive core language
with assignment, fancy subscriptlng, and the like being added by means similar to
the addition of new operators, and he called for simpler coercions and no multiple
r~s. Many others submitted detailed suggestions, both to the AB and directly to
Amsterdam.

In May 1968, the tenth anniversary of ALGOL 58, a colloquium had been held In
Zurich [AB28.1.1], where the recently distributed Report came in for much
discussion, being "attacked for its alleged obscurity, complexity, inadequacy, and
length, and defended by its authors for its alleged clarity, simplicity, generality,
and conciseness". Papers given at the colloquium included "Implementing ALGOL 68" by
Gerhard Gobs, "Successes and failures of the ALGOL effort" by Peter Naur [AB28.3.3],
and some "closing remarks" by Nlklaus Wirth [AB29.3.2]. Naur's paper contained

52p.37

criticism of MR93, as providing "the ultimate in formality of description, a point
where Algol 60 was strong enough", and because "nothing seems to have been learnt
from the outstanding failure of the Algol 60 report, its lack of informal
introduction and justification". IFIF seemed to be calling for immediate acceptance
or rejection (thus precluding further development of MR93), and thus IFIP was the
"true villain of this unreasonable situation", being "totally authoritarian" with a
comamlttee structure and communication channels entirely without feedback and with
important decisions being taken in closed meetings. "By seizing the name of Algol,
IFIP has used the effort ... for its own glorification." Strong words indeed!
Wirth's contribution was also critical of MR93, and of the method whereby the
Working Group, after a week of "disarray and dispute", and then "discouragement and
despair" would accept the offer of any "saviour" to work on the problems until next
time. Eventually the saviours "worked themselves so deeply into subject matter, that
the rest couldn't understand their thoughts and terminology any longer". Both Naur
and Wirth resigned from the Group at this time.

Now at that time the ALGOL Bulletin, which was (and still is) an official IFIP
publication, was printed by the Mathematisch Centrum in Amsterdam, and when AB28
(originally dated July 1968) containing Naur's paper was sent there for printing,
Van Wijngaarden refused to do so. At the next WG meeting in North Berwick in August
there was a furore, with words like "mud" being applied to Naur's paper, and Fraser
Duncan refusing to compromise his editorial freedom. AB28 did eventually get
published without expurgation, but some months late (and, to be fair, there were
also floods and mislaid manuscripts whichcontributed to the delay).

The North Berwick meeting, which was the first that I myself attended, was five
days of continuous politics. I have just been re-reading the minutes, and they
display a sorry tale. A poll was taken concerning the future work of the group, and
the best part of a whole day, both before and after the poll, was taken up with its
form, and how its results were to he interpreted. One can see that mutual trust
between the two parties had been entirely lost, and jockeying for position was the
order of the day, and of every day. Barely half a day was spent in technical
discussion of the Report.

The meeting at Munich in December 1968 for making the final decision was also
political, but there was much more willingness to reach a compromise. There had now
been three further drafts, MR95, MR99 and MR100, and there was much more technical
discussion than there had been at North Berwick, resulting in the final document
MR101. The meeting devoted much time to drafting a covering letter which would be
acceptable to all, and which "did not imply that every member of the Group,
including the authors, agreed with every aspect of the undertaking" but decided that
"the design had reached the stage to be submitted to the test of implementation and
use by the computing comlunity". This was still too strong for some members,
however, and on the last afternoon of the meeting a short Minority Report signed by
eight members was presented. The Formal R~solution submitted to TC2 clearly implied
that the Covering Letter should accompany the final publication of the Report,
together presumably with the Minority Report. In January 1969, TC2 duly forwarded
the Report and Covering Letter (but not the Minority Report) to the IFIP General
Assembly, which in May authorised publication of the Report, but without the
Covering Letter. The text of the Minority Report may be found in [AB31.1.1]. It
spoke of the effort which had gone into ALGOL 68 as an experiment which had failed,
and claimed that the language's "view of the programmer's task" was ten years out of
date and that, doing little to help "in the reliable creation of sophisticated
programs", the language "must be regarded as obsolete". It is a pity that its
production at the very last moment precluded a more constructive minority report,
such as Doug Ross had been trying to organise in the months preceding the meeting
(as documented in [AB30.2.3]). The Munich meeting had also recommended to TC2 the
setting up of a new WG2.3 on Programming Tools, and after the meeting ii members
resigned, to become the nucleus of the new group.

Post Munich

.q, 52p.38

ALGOL 68 now entered on its "maintenance phase". Of course people found
problems, and there were worries about the way infinite modes had been defined in
the Report. Fraser Duncan had been warning about the mathematical unsoundness of
these for a long time, but articles by Meertens [AB30.3.4] and Pair [AB31.3.2] did
not make their points clearly enough to be noticed (it was not until much later that
Hendrlk Boom showed the lurking ambiguity plainly for all to see, leading to the
fixing of the problem in the Revised Report). In [AB30.3.3] Koster introduced his
famous algorithm for determining the equivalence of two modes (essentially, they are
equivalent if you can show that they match given the hypothesis that they are the
same mode).

The original Covering Letter had envisaged that a revision of the Report might
be needed in due course, and in 1971 the WG issued a general call for suggestions
[AB32.2.8], stressing however that "for the present, the language definition shall
remain stable", and that "there should be only one revision". There then followed a
variety of reports by subcommittees of the Working Group, which had been charged
with collating such material. Examples are reports on Data-processing and Transput
[AB32.3.3, AB33.3.4] containing quite elaborate proposals for "record transfer" to
mass-storage devices, and others on General Improvements to the language [AB32.3.4,
AB33.3.3], on Conversational Languages and on Operating System Interfaces [AB32.3.5 ,
AB32.3.6, AB33.3.6], and on Sublanguages [AB33.3.5]. All these formed the input to
the meeting at Novosibirsk in August 1971 at which a timetable for the production of
a Revised Report was lald down.

Also at this meeting, Fraser Duncan resigned as Editor of the ALGOL Bulletin,
having been responsible for the production of 18 issues spread over 8 years. I was
appointed to take his place, and this seems as good a reason as any for terminating
this account here.

