
ISSN 0084--6198

Algol Bulletin no. 50
DECEMBER 1983

ABS0.0 Editor's Notes 2

ABSO.i Announcements

ABS0.1.1 The B Newsletter 3
ABS0.1.2 [FIP - its aims & its recent publications 3
AB50.1.3 Programming Languages and Systems 3
ABS0.1.4 Book Review - Guide to ALGOL 68 4
A B 5 0 . 1 . 5 IFIP Working Conference on Problem Solving

Environments for Scienti fic Computing 5

AB50.3 Working Papers

AB50.3.1 The Art and Science of Programming

AB50.4 Contributed Papers

A B 5 0 . 4 . 1

A B S 0 . 4 . 2

Lloyd Allison, An Executable Prolog Semantics 10
David Outterldge, A Library Mechanisn for the

C[X: ALGOL 68 Compiler 19

aS S0p.i

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the ~nternational Federation for ~nfolrmatlon Processing (IFIP WG2.1,
Chairman Robert B. K. Dewar, Courant Institute).

~e following state1~nt appears here at the request of the Council of IFIP:

"Ths opinions and stateumnts expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IFIP undertakes no
responsibility for any action that might arise from such statm~nt8. E~cept
in the case of IFIP documents, which are clearly 80 designated, IFIP does not
retain copyright authority on ~terial published here. Permission to
reproduce any contribution should be sought directly from the authors
concerned. NO reproduction may be made in part or in full of documents or
working papers of the working Group itself without permission in writing
frow IFIP."

Facilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester. Word-processlng
facilities have been provided by the Barclay's Microprocessor Unit, University of
Manchester, using their Vuwritsr system.

The ALGOL BULLETZN is published at irregular intervals, at a subscription of
$11 (or £6) par three issues, payable in advance, orders and remittances (made
payable to ZFIP) should be sent to the Editor. Payment may be ~ade in any currency
(a list of acceptable approximations in the Najor currencies will be sent on
request), but it is the responsibility of each sender to ensure that his payment
is made in accordance with the currency requirements of his own country.
Subscribers in countries from which the export of currency is absolutely
forbidden are asked to contact the Editor, since it is not the policy of IFZP that
anyone should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is s
Dr. C. H. Lindsey,
Department of Co~uter Science,
University of Mallchester,
Manchester, MI3 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4.50 (or £2.40) each. However,
it is regretted that only AS32, AS34, AB35, AS36, AB38--43 and AS45 onwards are
currently available. ~ne Editor would be willing to arrange for a Xerox copy of
any individual papez to be made for anyone who undertook to pay for the cost of
Xeroxing.

AB 50p.2

AB50.O EDITOR'S NOTES.

ALGOL 68 standardization

I mention~i in the last issue that the proposals to produce an International
~a~ard for ALGOL 68 were about to go to a letter ballot within ISO. This
produced an overall majority in favour, and even five coutries willing to
participate in preparing the Standard (W. Germany, Belgium, Netherlands, U.S.S.R
and Czechoslovakia), but unfortunately two of the would-be participators
(U.S.S.R. a~ czechoslovakia) were not the right kinds of member of the right ISO
co~ittees, and so the project did not get through. Thus we are now struggling in
the mire of ISO politics and, unless some a~dltional coutries can be persuaded to
support it, or unless the rules within ISO can be changed or circumvented, the
proposal will likely fail.

ALGOL 60 StandardIza~q0

Z said in the last issue that ISO 1538 was about to be published. This sty ii
m to be the situation (ISO po] itics again).

Activities o f IFIP TC2

TC2 is the parent committee of Working Group 2.1 (indeed, the ALGOl. Bulletin
is, strictly speaking, aT C2 publication). The article in this issue (A850.3.1) is
mainlyapublic relations exercise on the part of IFIP, but it does at least serve
as a useful reference as tow hat each Working Group is supposed to be about. There
is a general permission to reproduce the article in whole or in part, provided the
original author is acknowledged, and that it is made clear if any truncation or
aditinghas taken p l a c e .

Survey of viable Imple~ntations

In A547.3.3 I published a list of viable implementations of ALGOL 68. I
intend to publish an updated version in the next issue, and I therefore solicit
details of their offerrings from any Implementors of the language who were not
included previously. The only conditions for inclusion are that the
i~ple~ntatlon is available for distribution, and that it is already in use on at
least two sites.

In the meantime, you might like to know that ALGOL 68C is now available for
the DEC VAX (under Berkeley Unix 4.2) from the ALGOL 68C Distribution Service,
Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG, UK. Also that ALGOL
68RS on the VAX (from S.P.L.) is imminent.

aS SOp.3

AB50. I Announcements.

AB50.1.1 The B N e w s l e t t e r

Those i n t e r e s t e d i n t he B p rogra~Ltag language (see AB48.4.1 f o r an
i n t r o d u c t o r y t u t o r i a l) may be i n t e r e s t e d i n the B N e w s l e t t e r which w i l l be
distributed regularly by the Inforeatics Department, Mathematlcal Centre, POB
4079, 1009 aS ~ste~dam, The N e t h e r l a n d s . q ~ e first issue, d a t e d AUgt~t 1983,
listed the various Technical Reports on the language that are available, and ~ave
information about the pilot i~le~ntation (UNIX VAX or P~II) and the
soon-to-be--released p o r t a b l e i~le~entation (written in C).

ABSO.i.2 1FIP - its aims & its recent publications

Noth-Holland has recently published a booklet entitled "IFIP, its aim & its
recent publications". The brochure presents a detailed desori~£on of IFIP
(Internatlonal Federation for Information Processing), as well as full details on
55 books reflectlng ~he interest-sphere of IFIP: Progra~Ing, Education, computer
A1 Ipications in Technology, Data C~unicationa, System Modelling and
Op~J~alzatlon, Information Systems, Cx~putere and Society, Digital Syste~ Design.

IFIP publications are available to members of national information
processing societies at a 25% discount;

Write for your copy of the brochure to: North-Holland Publishing company,
Attn: Jcop Dirk-~t, P.O. Box 1991, 10oo BZ ~terd~, The Netherlands.

ABS0. I. 3 Proqrammin~ Lanquaqes and System Design

This book, edited by J. Bomann and published by North-Holland, c~prises
the Proceedings of the IFIP TC2 Working Conference on Prograe~4ng Lanquage8 and
System Design, held in Dresden (G~R) on 7-10 March 1983, under the joint
sponsorship of IFIP ~2.1 and WGi.4. It contains the texts of the following
papers :

Fast Automatic Liveness Analysis of Hierarchical Parallel Systems, by J.
Roehrich.

Concatenable Type Declarations - Their Applications and Z~lementatlon, by
A. Krec~- and A. Salwicki.

On the Coherence of Progressing Languages and Progressing Methodology, by 14.

Broy and P. Pepper.
On the Design of Data Abstraction Mechanim for Compiler Description

Languages, by f t . Ganzlnger.
The ReuK~du].srization of a Compiler by Abstract Data Types, by K. Bothe.
Experience with Abstract Data Type Specifications in a Compiler Project, by

O.L. Hupbach and H. Kaphengst.
XYZ: A Program Development Enviror~ent Based on Temporal Logic, by C.S.

Tang.
Programming in SETL Environment, by D.Y. Levin.

aS S0p.4

Design and Verification Oriented Mlcroprogram Transforwations, by D.
D~bi~ki.

ELSA - An Extensible Programming SystEm, by C.H. Lindsey.
R Skeleton Interpreter for Specialized Languages, by J. Steensgaard-Ma~sen.
co~aring PASCAL and 14NXJLA-2 as Systems PrograHning Languages, by P.H.

Rartel.

Early Experioence with the Programming Language ADA, by G. Persch, M.
Dausmann and G. Goos.

There are also the transcripts of two discussion sessions.

Price information is not curen~tly available, but presumably the 25%
discount to ambers of national information processing societies (see previous
section) will apply.

A B S O . 1 . 4 B o o k Review : G u i d e t o ~LGOL 6 8 - f o r u s e r s o f P~ S~_s_t~s

bF Philip M. Woodward and Susan G. Bond
160pp. Publ. Edward Arnold, £5.95.
ISBN 0 7131 3490 9.

Those who have used the previous "yellow" and "green" books (H.M.S.O) by
Woodward and Bond (which were companions to the original Malvern ALGOL 68R) will
Imediately recognise the practical style and headlong pace of this new book. Every
i~ortant fact about ALGOL 68 is there, but is ~entioned only once, so do not
blink as you read the book.

Thus the book is not for raw beginners - nor even for the hobbyist who thinks
c~uting is Just the BASIC provided on one of Mr Sinclair's toys. But for the
user of FORTRAN, or P~L (or even ADA), whose disillusionment with those
languages is not yet quite complete, it is ideal. Although intended primarily for
users of the Malvern-developed RS compilers (as implemented on the ICL 2900, the
Honeywell Multlcs and, soon to come, on the DEC VAX), the discrepancies between
ALGOL 68RS and the language of the Revised Report are meticuloulsy (and mostly
unobtrusively) recorded, so users of other systenm need have no fear. Errors of
c~alesion are conspicuously absent (I hope the remark about implementors keeping
line buffers in their FfLE structures was not really intended) and errors of
omlssion are few (but I could not find, for exan~le, any mention that I could
include the word LOC in a variable-declaration, nor any mention of PRAGNATS, nor
of uode-equivalence). On the other hand, good programming style is well described
(if you ewcuse Philip Woodward's morbid fear of using the heap), and the section
on list processing, with full discussion of the "3-REF trick", is particularly
thorough.

AS a work of reference, the book is less successful (in spite of claims in
the introduction to the contrary). The facts are all there and will be found on
sequential reading, but it appears that se~ is not possible. I looked in vain in
the index for the word "scope" (they tend to misuse the word "range" when
discussing this matter, but even that word in the index did not lead me to the
discussion of scope violations). Thus, as a reader of the ALGOL Bu]]etin and
therefore already presumably having a good knowledge of the language, there would
not be much gain in buying the book for yourself. But it would make an ideal
Christmas present for Four friends.

C . H . L i n d s e y .

AB 5 0 p . 5

AB50. I.5 Preliminary Conference Announcement.

IFIP Working Conference on Problem Solvirq~ Environments for Scientific Computing

IFIP TC2 willbe holding a working conference on "Problem Solving Environments
for Scientific Computing" at the INRIA-SOPHIA-ANTIPOLIS Laboratory in France
on the 17th - 21st June 1985. A Problem-Solving Environment (PSE) is an
integrated multi-tasking system that supports the solution of a given problem.
In many scientific areas, computer software has been developed with
specialised high-level languages, complex data structures, graphical displays
and post-processors. Such packages allow the user to employ the terminology
of the problem area, remove the need to become involved in low-level
programming details and maximise productivity.

Work on PSEs has led to the development of facilities directed to specific
problem areas. For example, expert systems involve automated reasoning, data
base manipulation and question and answer sessions. Statistical PSEs have
emphasised problem oriented languages. In the CAD/CAM environment data
display and the use of display equipment are crucial. The aim of the
conference is to bring together workers on scientific packages and on PSEs to
exchange ideas and experiences.

We shall examine PSEs in scientific applications with particular emphasis on
the role of numerical computing. Rather than review a number of existing
systems in detail, we hope to consider the overall specification, construction
and development of a PSE. To this end some topics of interest are:

comparison of self-contained and open systems; applicability of knowledge-
based techniques to numerical problems; integration and design of a user
interface; achievement of clean dataflow handling; data display; selection
and design of implementation language; design, transformation and
maintenance of integrated data structures; support, parsing and processing
of user dialogue; use of reliable numerical algorithms and diverse
hardware; interpretation and summary of results; and the impact of personal
computers and scientific workstations.

The meeting will include both invited and contributed papers. One session
will be reserved for discussion of issues that arise during the conference.
Time will also be included for demonstration of PSEs by attendees, who will be
responsible for provision of their own computing resources (although some
local assistance with electrical power and modem contact will be available).
Substantial time in the programme will be allocated to discussion. The
proceedings, including an edited transcript of the discussion, will be
published.

In order to preserve a "workshop" atmosphere the number of participants will
be limited to approximately 80.

Those interested in attending should write to the Conference Chairman,
B. Ford, NAG Central Office, 256 Banbury Road, Oxford OX2 7DE, England
preferably including a brief description of their work and interests in the
area, to support their application. Please also indicate whether you will be
able to finance your own expenses; we are applying for financial support, but
this is unlikely to extend beyond partial support for invited speakers. I

A B 5 0 . 3 . 1

AB 50p. 6

T H E A R T A N D S C I E N C E O F P R O G R A M M I N G

1F1P's community of experts tackle key problem areas

(This report has been written for IFIP by Kenneth Owen,
former Technology Editor of The Times, London)

Programming arouses strong feelings - - of incom-
prehensibility, alas, to many people outside computing;
of partisan vehemence by factions of experts on the
inside. In the world of computers, no subject is more
basic, none so all-pervasive in its impact (for good
or ill) on the performance of computing systems.

For a subject as wide-ranging and ubiquitous as this,
who would dare to attempt to set up a framework
within which experts would comprehensively monitor
and advance the state of this peculiar art ? The
answer to that question is IFIP, the International
Federation for Information Processing, and in parti-
cnlar the Federation's Technical Committee 2 (TC 2).

IFIP's members are national professional and techni-
cal institutions. Its aims are to promote information
science and technology and to stimulate research,
appfication and international co-operation in this
field. TC 2 is one of nine technical committees
within IFIP, each acting as a forum for discussion
in a particular technical area. Chairman of TC 2 is
Professor Manfred Paul of the Institut fllr Ioformatik
at the Technical University of Munich.

Each IFIP technical committee, made up of national
representatives, devolves its technical work to a
number of working groups, which invite appropriate
experts to participate regardless of nationality. Each
working group covers a particular specialization~

The work of TC 2 has evolved in response to develop-
ments in the science of programming over the years,
Professor Paul points out. In the late 1950s, he

programming really was the struggle to get
away from resembler languages and to create higher-
level languages such as FORTRAN and ALCJOL.

In particular, the pseliminm V report on ALGOL which
appeared in 1958 acted as a loons of intense interest
for computer scientists. IFIP itself was created under
the auspices of UNESCO in 1960, with two initial
technical connnittee% TC 1 (Terminology) and TC 2
(Programming). For TC 2, the title * programming •

at that time meant high-level programmij~g iasgnage
design, followed ckeely by the start of work on the
automatic translation of such languages. Buh. even
then, it was clear that there was more to programming
than simply programming languages.

Working Group 2.1 (ALGOL) was formed in 1962.
It began its work by first discussing how to implement
a language such as ALGOL. As a result, 2.1 was
trying to revise and improve the 1960 ALGOL
Report, while, at the same time, it was investigating
the problems of translating such a language.

• During that time it became clear that one had to
study not only the programming language itself,
but also the means by which such languages were
defined •, Professor Paul says. ¢ And, for that defi-
nition also, a formal language is best. • This led to
TC 2% first working conference, held in Baden,
Austria in 1964, at which languages for defining
programming concepts were discussed.

The following year a second working group, WG 2.2
(Formal description of programming concepts) was
set up. • Not only did that widen the view of pro-
blares in computing •, Professor Paul notes, • but it
established a formal way for those topics to be
discussed. •

A decisive turning point came in 1966 when WG 2.1
(having revised the ALGOL 60 Report) started to
think about further concepts which would enable a
high-level language to deal more easily with more
general, non-numerical algorithms, such as those for
text handling, for instance. More general data struc-
tures than those of ALGOL 60 were sought, and to
this end a new way of defining programming languages
was presented.

The working group commi~-sioned a sub-group to
define a suceessor to ALGOL 60 which would in-
corporate the new data structures and use a more
rigid means of defining the language. The result was
ALGOL 68, an undoubted intellectual achievement

AB 50p. 7

bet one which suffered from the extreme rigidity
with which the language was defined, and ~om a
number of programming concepts which were not
generally accepted.

In 1969 the ALGOL 68 controversy led to the lfiv~g- '
off from WG 2.1 of a new working group, 2 4 ,

With progrgmmin~ methodologies. This
reflected the expansion at that time of the overall
CeslCept of programming. It had become clear that
programming was more than just looking for the
concepts in the language and for definition methods.
It was also about the methodologies and tools needed
to transform ideas fc~ algurithms into working
programs.

Up to this time the mahn interest in programming had
concerned programs for usc~ applicutious. But in
the early 19708 a new interest emerged in the design
of operating systems and systems software generally.
A working conference on machine-~iented high-level
languages was followed by the formation in 1973 of
Working Group 2.4, concerned with system imple-
mentation languages. Thus the understanding of pro-
gramming was growing progr~mively as different
fa©ets of the subjeet came under scrutiny.

The next development within TC 2 was concerned
not with a new aspect of programming but with a very
familiar one ~ that of mlmerical software. In one
seine the numerical analysts were really the people
who started it all, anyway : they were the fwst to use
big computers and to write complex algorithms. In
1974 their interests were formally recognised with
the setting up of WG 2.5 (numerical software).

Data bases had become very much a hot topic by
this time, and the study of data base languages and
technologies was taken up by WG 2.6, the second
working group to be formed in 1974. Command
languages which give an interface to the system had
also emerged as a potentially difficult area, needing
further study, and this was reflected in the formation
in 1975 of Working Group 2.7 (operating system
interfaces).

TODAY'S TOPICS The pressing issues in the field
of programming today, Prof©ssor Paul says, ate
centred on concurrent progFammin~., distribnted rjls-
terns, and expert systems in the widest sense. But,
within these areas, the questions are the same as
before : how to go about solving problcms with the
help of the systems that you have. The systems are
now more sophisticated, they may be distributed via
local area networks, they are likely to contain huge
data bases.

• You have to know how to deal with huge amounts
of data, fox example, I0 e or 10 7 different objects
that have to be grouped according to certain criteria.
That's what data bases do and, i f you have the right
control and method to use the system purposefully
and through an attractive man - machine - com-
mudication, it may develop into an expert system. •

And, the TC 2 chairman adds, there is the collection
of problems which are being addressed in the J a p ~
fifth-generation computer programme. Professor Paul

does nm believe that all the aims and goals of the
JapateIQ programme will be reached within the
plimned decade. He doubts whether some will ever
be read3ad.

• But I'm sure that some of the interesting kane8 of
ar t i f ic~ intelligence - - for example, artificial vision,
puttexn recognition in the area of andl'ble trans-
missions, or robotics - - all come together to form a
very complex bunch of questions and problems
which have to do with programming. •

Pr'o~ammln~ is an engineering discipline, Professor
Paul comments. While the classical engineering fields
deal wi th matter, the software engineer's • matter •
consists of hfformafion.

Similarly, with programming, a new dimension is
added to engineering. • Programming is partly a
fundamental science, and partly it is an engineering
discipline. • And the work of TC 2, the chairman
insists, covers both theory and practice.

The committee has rejected suggestions that it should
adopt the phrase • software engineering • in its
formal terms of reference or in those of one or other
of its working groups. This is not becausc the subject
is not imlxzrtant - - it is regarded as very important
indeed - - but because the present definition of the
committee's scope (as quoted later in this article) is
seen as already embracing the subject.

• So far), says Professor Paul, • I think all the
actual problems that have come up in programming
have been incorporated into the work of our groups,
although sometimes the shift of interest to tackle new
problems may take perhaps two years to achieve.

• The framework has proved remarkably good, and
also flex~ic in that we have encouraged young
people with new ideas to participate. We believe our
structure covers the field at present. •

GROUP ACTIVITIES Against this background
of the historical development of programming and
today's topics of interest, TC 2's working groups are
pursuing active programmes in their respective areas
- and in their various ways. To hold working confer-
ences of experts and publish the proceedings is one
well-established practice within IFIP, but no standard
working style is laid down for the working groups.
In the TC 2 groups in particular, the style reflects
the membership.

Starting point for the TC 2 work is the formal
definition of the committee's scope. This says com-
prehensively that the committee's work includes :

- gene ra l considerations concerning programming
principles and techniques, such as concept develop-
ment, classification and description;

- t h e investigation and specification of particular
programming languages;

- the investigation and specification of programming
systenzt; and

- the identification, investigation and specification
of programming techniques and their appllcatioos.

On oeemiom tha committee m diatinct from a par-
t ~ a r ~ woup wm s p o m r wurkias co~er-
encm; a m e n t enmple (in ~ H - - ~ ' = , T , in
May 1983) covarnd syztem ~ metho&~oSm.

The committee's longmt-establishad working group,
WG 2,1, takes as its geamal scope at present the
~ suppu~ of ALGOL 60 and AtF-,OL 68;
and • the explonttion and evaluation of new
in the fictd of ~ogramming pom't~ kndins to furmer
languages., Within this latter arex tbe group has uow
embarked on a particular line of study which has
significant implications.

Over the past two years the group has explored some
of the concepts involved in programming by transfor-
marion - that is, the search for methods to tran~orm
a formal specification into a ruanuble program: They
did not believe this could be done completely amo-
matically, but interactive methods might help in a
step-by-step sequence:

Now the group has narrowed down from the search
for general concepts to a scrutiny of particular
languages in the context of transformational pro-
grantming. One example is the language CIP-L
(CIP stands for Computer aided, Intuition guided
Programming) developed by scientists at Munich
Technical University.

Working Group 2.2 (formal description of program-
min.g concepts) describes i t s scope as ¢ to explicate
programming concepts through the development,
examination and comparison of various formal models
of these concepts. • Last year it held its second
working conference on the formal description of pro-
gramming ~ t s in Garmisch, F.R.G. Just as the
first working conference on the same topic in St .
Andrews, Canada, it was very well received.

Working Group 2.3, set up in 1969 by a minority of
2.1 members who had opposed the publication of
ALGOL 68 (¢ feeling that programmers needed tools
other than bigger and better programming languages ,,
to quote Mr. M. Woodger of the UK, chairman of
2.3), has a record of distinguished contributions to
computer scicnee by its members - and of a fight,
informal workin 8 style.

Its subject is programming methodology, and its
defined aim could hardly be more all-encompassing -
• The work of the group is directed towards incre~ing
programmers' ability to compcee programs. • Eight
topics are listed to illustrate the scope of the group's
work, but again the net is cast deliberately wide.

The group sets out to provide an international forum
for the dlscuuion of programmin 8 methodology. In-
formal discussion meetings rather than formal confer-
ences are the rule, with the result of this interaction
appearing in the normal scientific literature rather
than in special published proceedings.

Machine.oricuted higher-level languages, otherwisc
known as system implementation langaagea, are the
concexn of WG 2.4. In general thase are characteaized
by:

A B 5 0 p . 8

- tbeir " l a d e d ~ t i o n m (~ t , , . t e daveZop-
meat);

- thek machine ofimtafiou (they may be used as

of
prosnun; and

- their" use of coutrel features (but not necemtrily
data or operation features) of ~ m l ~ purpose
prosrammins l angua~ .

Membem of the group have been much concerned
with the Ada language in reeem years (about half
tha memben were involved in Ada program develop-
ment). Now the emphasis is changing towards prO-
gramming environments, concurrent systems, machine
architecture and compiler tedmology, with the goal
of deriving requirements for future system program-
min8 uruguay.

As a group, the members aim to explore the tech-
niquas involved in their kind of languages, rathar
than to design a specific langsmga of their- own. In
March 1983 at Dresden., G.D.R., a joint 2.1/2.4 open
conference was held on programmm~ languages and
systems design. WO 2.4 members are now preparing
for a 1984 weekin 8 conferenee on * system program-
miog languages - experiences and ~ n t ,, which
will be held in Canterbury, England.

Working Group 2.5 aims to improve the quality of
numerical computation by promoting the development
and availability of sound numesical software. Most
of its activities take the form of projects, in which
one or more members persne a chosen subject in
collaboration with other scientists in the field.

Subject areas which have received the attention of
2.5 include the transportability of numerical software,
language6 for numerical software, programming en-
vironment for the development of numerical software,
hardware requirements for numerical software,
evaluation of numerical software, and numerical
software for special areas.

Software for solving partial differential equations was
the subject of a working conference in Sweden in
August 1983. The group is working towards a closer
collaboration between the designers of numerical
software and of statistical software.

Although the general-purpose scientific languages
form the basis of g u n e r a l - p ~ scicntific compu-
tation, there is a need for more specialized languages
and computing environments (e.g. for computer aided
design). These can free the user from the necessity to
learn a sophisticated programming language, and can
address the problem area directly using its own vnea-
belury. A forthcoming working conference will explore
the implications.

Working C.~onp 2.6 (data bases), whose scope is
• to investigate, evaluate and develop data base lan-
guages and technologies ~, has been relatively inactive
in recem years. Under a new chairman it is now
planning to launch a new programme, starting with
a working conference on conceptual schema design
methodology.

AB 50p. 9

W ~ . l n g Oroup 2 7 ares to investigate-.the natm'e
end concepts of the interfacer of operating s . ~ .
Within thb broad scow tbe group is now wodking on
a l~oject to pr~xluce a framework in wldd~ ~ r
i n t ~ a c ~ to an op~mtiag system rarebe
and modcll~:L Such a fi'amework must be catmbk of
m ~ . m n g both existing and fmuR command and

=

mln~i.g behind this = that mauy pcop~ haw
tried to ddJas commam:l and reSlXmm: in t=ms of tbe i
~uud ~ S = , , ena w~out ,xm~,d=mg the uad~-
compmering coas~pm. As a result, the mer interfaces to

systems are diffkult f o r ~ t s to
understand. The 2.7 project dumld provide a dmt~=r
and better o r~ , i .~d f~ramework within whic.h
mar interface can be tailored to diffe~at types of
a l c r s .

H e ~ WG 2.7's d r a f t ¢ refinance model for omn-
mm~:l ~ l m , p o ~ b a l e *, whid~ is mw l a g
fro.thor r~m~:l by tbe group; The modd i ~ J f d o g
not dd'm~ tb~ ~ymax. of the kmgua~, but dercn1~
the underlying system. The user can then define the
commands ~a oas wa~ or an~her - l b ~ typed at a
keyboard, for cxamp~ or spokea commands, or
sensor devices, or network mtedaees.

FUTURE DIRECTIONS One area wlfich is of in-
Cl~.-~<in~ Jat~c~t to TC 2, as meationed by the
chairman, is that Of distribated dam proceuina/
Mr. T.B. Steel Jr. of ~tbe USA, a former TC 2 chah'-
man, now acts as liaison officer betwenn the com-
mi t t~ and the Open Systems l n m n (OSD
activity of the International Standards Or~ni~ t ion
(ISO), which is ~ with the und~lying network
mz~.-u of d~,m~zned sysmm.

Tbelisk with the ISO lab a'doeble bandit : it keeps
T C 2 mmbers aware of the pregmm of the OSI
work; amt it enables them to influence some of this
work it neeemury. It also lzrovidm a brae from which
to address the wider aspects of distributed systems.

intel~atiag with OSI such'.th~=l~ u ~eneiaely distri-
betea am tmes, rJeWmes~ag ~ sraphi=
faugJtiea and eemmnod asd p~p~.,~e ka~al~e, - ia
very cmeml temB, tbe dimibetioa and la-depth mer
intmface mtpects of mch syst=m=.

To achieve tully int©grated distributed systems,
Mr. Steel m88mts, will take at least ten yean' work.
For TC 2 to addreu this mbject in a more fmmal
way , possibly by h _chili'hi a working conference
which might k a d t o the formation of a new working
group - would be a logical futuxe development.

Another development could be to bring in to TC 2's
activities more experts from the artificial intclligenee
community, since what they are doie8 is very much
• pro~p"~mmi~g, and their field is ~ rapidly.
The subject is c, learly of interest to a number of TC 2's
existin8 working groups (such as 2.1, 2.3 and 2.6),
but a'shaqz~r foens to the enmmitt~'s interest in this
subject would be another losical possibility for the
future.

There is no doubt that, over many years, members
of TC 2 and its working groups have significancy
influenced the development of competing science, both
collectively and as individuah. The committee's mem-
bership embrsces both traditio~ists, active in reining
familiar techniques; aud radicals, keen to invertigat~
new com~pts. Perhaps one of their future dimctiom
might even lead to the foolproof and almmt fury
r~n~b~ ~o~ua.

• Pub~t@¢l by the IFIP Secretariat, $ rue du MarchS, CH-1204 GENEVA, Switzerland
October lge8

For]urtht~" infmvnation, ple~Je contact your Notiono] Computer Society or the IFIP Secreturiat.

AS 50p'10

A B 5 0 . 4 . 1 An E x e c u t a b l e P r o l o q Semant ics ,

L loyd A I l ison
Department of Computer Science
University of Western Austra l ia

Ned lands 6009
zslsIaY

Abstract.

A Denotetional Semantics of the logic programming language Prolog is
expressed in Algol-68. The result is a formal definition that is also
executable. It is presented as an example of high-order programming' in
Algol-68; the eventual aim is to use this to compare differing brands and
implementations of Prolog formal ly and experimental ly.

Introduction.

Pagan [i] suggested the use of A lgo l -68 as a metalanguage to write
denotetional definit ions in, but he recognised that to t ranslate the highly
curried functions in e I - I manner would require par t ia l parameterisation[2].
For example, the domain of functions A->B->C or proc(AJproc(B)C cannot be
used in A lgo l -68 i f the proc resul t depends on local objects as it usual ly
does. In [3] however the definit ions were uncurried, to A x B -) C or
proc(A~B)C, and then expressed in Pascal, as it happens~ to define a very
sinai I language with jumps.

Here the technique is applied to a definit ion of Proloc~4]. The notions
of Standard Denotational Semantics are used. The advantage of using a
uniform f lavour or s ty le of semantics is the a b i l i t y "to discuss very
di f ferent languages (for example Pascal and Lisp) within a single
framework"[5]. The eventual aim here is f i r s t l y to bring Prolag within this
framework. Then, Prolag is recognised as only e f i rst approximation to the
goal of programming in logic. Its declarat ive semantics are to be
understood as f i rst-order logic but Prolog implementations invariably
include non- logical features for various reasons, notably for eff ic iency but

As 5Op.H

An Executable Prolog Semantics

also t o make some programs work at a l l . These features can only be
Understood in terms of Prolog's procedural semantics which specify h o w e
program is executed; their use is also c a l l e d specifying the "cont ro l "
component of 8 program. One might devise elegant methods for the
programmer to specify the contro l information[6, 7] or better for this to be
generated eutometicallyC7]. The second aim is to define these procedural
semantics in the denotet ional s ty le so as to compare various contro l
mechanisms. It is hoped that the formal theory of Denotet ional Semantics
w i l l i l l um ina te the essential features of the mechanisms. By coding the
semantics in A lgo l -68 it is possible to run the definit ions as interpreters
end to experiment with them.

Using A lgo l -68 as a metalanguage for Danotat ionel Semantics explo i ts
the fact that A lgo l -68 minus assignment is e useful funct ional language.
The technique is perhaps less "c lean" than using a true Semantic Compi le r -
Compiler[8,9,10] but it needs no software other than e compi ler.

The semantics given here l= for a very basic Prolog, s t r i c t l y le f t to
r ight depth-f irst search end cut is not defined. 3ones and Mycroft [11] give a
denotationel def ini t ion at about this leve l of detai l which does include cut.
Lassez and Maher[12] give a denotet ional defini t ion much closer to the
declarat ive interpretat ion of Prolog.

Prolog.

A very simple example is given here to i l l us t ra te some of Prolog. A
clause is a statement of fact such as "male(fred)." or

"brother(X,Y):- ma I e(X),parents(X,A,B),par ents(Y,A,B).'.

This demonstrates atoms such as "fred", variables such as "X" and compound
terms such as " ~ ¢ ~ i ~ ' x , Y) " . The f i rst clause can be thought of as a basic
fact in that i t is true without fur ther proof. The second is a ru le and can
be read, X is a brother of Y if(=-) X is male and the parents of X are A
and B and the parents of Y are A and B. Note, the impl ic i t association of
these clauses with real fami l y relationships is an interpretat ion supplied by
the programmer end not by Prolog.

A question has t he form "?male(fred)." which, given the above Clauses
would resul t in e "yes" response. "?ma le (b i l l) . " would give "no" as things
stand. A question may also include ver iebles as in "?male(X)." which
would resul t in "X=fred yes" or some s imi lar indication that the question
can be solved by binding X to fred. Precise detai ls vary between
implementations but there is some way of running through a l l possible
solutions to e question.

In fo rma l l y , Prulog is implemented by some form of backtracking,
usual ly le f t to r ight depth-f irst search on the terms in the current g0al
clause. At the heart of the search is e pattern-matching algor i thm ca l l ed
unif ication which attempts to match the current term with the heed or l e f t
hand side of e clause from the set. This may involve binding variables in
the term and/or the head, and is done in "the must general" way possible.

J

AB 50p.12

An Executable Pro log Semantics

Domains.

The domain of function A->B w i l l be coded as proc(A)B. The high-
order domain A->B->C or A->G->C) must be uncurried to AxB->C and
coded proc(A,B)C. The disjoint sum A+B is coded union(A~B) end the product
AxB becomes struct(A,B).

An atom can be an integer or e string as in "fred". Lists of values
can appear in compound terms. A Prolog program w i l l be represented by a
t ree - l i ke data-structure value=
mode node=union(int~tring,eompound, ! ist, l ,cation);
mode eompound=struet(atring op, l ist args); mode l ist=struct(velue head,tail);
mode ve|ue=ref node. For the case of a clause there w i l l be a compound
with op ":-" and for a question "?".

Prolog has variables but these should be understood as part icu lar , as
yet unspecified, values. Once a var iable is bound its value w i l l not change,
except that it may contain other as yet unbound variables. The environment
in a Prolog program maps var iable identif iers onto values
mode env=proe(vor id)velue. A var iable ident i f ier may be reused in several
procedures and a procedure may be recursive so to avoid name clashes the
approach taken here is to map unbound variables to locations which w i l l
hopefu l l y la ter attain a value in the store, mode store=proc(location)velue.
Some implementations use systematic renaming of variables which is
equivalent to the use of locations.

!__~- leve I semantics.

A program is processed one clause or question at a time sequential ly.
Each clause can be thought of as (part of) a declaration of a procedure,
such as procedure "brother" above. This sequential processing is specified by

exee: prog->pnv->dcont-> answer
pnv=term->prok
dcont=pnv-> answer
answer=({yes}+value)**

i f progl and prog2 are each a clause or question then

exec "progl.prog2." p dc
= exec "progl . " p newdc

where newdc=(p')answer =
exec "prog2." p" dc

exac "q:~r." p dc = dd "q:-r." p dc
exec "?q." p dc = << pp "?q." p emptyenv yes emptystore,

d c p
>>

A declarat ion continuation dcont is something to execute af ter the given
clause or question. To execute progl prog2 in succession, execute progl in
the given procedure environment p and with a new continuation which w i l l
execute prog2, progl may update p to p'; execute prog2 with p" and

s o p . z 3

A n Executab le P r 9 ing S e m J n t i e s

eventual cont inuat ion dc. Clauses are def ined by dd

In A l g o l - 6 8 exec must be uncurr isd: .

proc exec~(vJ lue, prng,pnv p,deont de)answer:-
cme peng In

(Ib t l) :exec(head o f l , p,
~lpnv pZ)wmwer:

exec(te i l of i , p2, de)
),

(compound c):
i f op of c = "=-" then

dd(args o f c, p, de.)
e lse # must be quest ion#

cons(pp(args of c,
p ,empty emv,yes,empty store),

de(p)

f i
out undef ined
esec

where
mode dcont=proo(ixw)enlwet ;
prec undef ined=amwer:

(pr int ("ondef ined prog"); goto stop; skip);
env empty env=(aU.ing id)va lue: unbound;
s tore empty e tore=(locat ion I) va lue : unset

and
in fo rma l l y , yes gives answer "yes"
pp processes questions and dd dec lara t ions or c l a u s e s .

and quest iorm.by .ap.

Ciauses.

Clauses are def ined by dd, . - -

dd:c leuse°>pnv->dcont->answer
dd "q : - r . " p dc = dc newp ..

where newp=(term t)prok:
(p t II

uni fy t q emptyenv c a l l r
)

where ca l l r=pp r newp

To eva lua te "q : - r . " g iven procedure envi ronment p and dec la ra t ion
cont inuat ion de, app l y dc to an updated p which wt l I a lso a t tempt to un i fy
terms t w i th q and, should that he succemfu l , ask "?r" . Note emptyenv
occurs because va r i ab le ident i f iers are loca l to a c lause, and II defines the
order of search amongst the ru les , usua l ly , sequent ia l . I t is here that the
branching search b def ined; both~ the o l d p aod the hew; un i f ica t ion may

AB 50p. Z4

An Execu tab le P ro log Semantics

produce anSWeFS.

A te rm such as brother(,) denotes- a .p rok=qont ,>s to re ,>qnswer , c0~nt is
def ined be low, pnv=term->prok = term->cont ->s tore->acswer or uncurr ied
ttl~xJe p lw:pro~te¢ lm,~ont t l to t , e)stlawer~ ~ ~ ~': :; ' " "

-, Note t h a t a .fast "q , " ~ t~ken to be a ru le " ~ - . " w i th an empty, rigt~t
hand side or nothing to prove.

In A lgo l - t i8 we ~heve, ,. " "

proc dd=(value dec,pnv p,dcont,:.de)armmr: : . ,~
(@nv .~wp=(va lue tFcoqt success,store ~ a m w e r : : .-

conjs(p(t,mJcceu,s), ~ - .~
(pcont ca] I r=(env e2,store s2)ermwer:

pp(ta i l of dec, newp; e2,
(env e3,storm, s~)emwer;.

. suCcesm(s3);

);
uni fy(t ,head of dec, emptyenv, ca l I r , s)

));
de(newp) ,.

)

We need to define the b~ktr~king search process of a typical Prolog
imp lementa t ion . A p a r t i c u l a r : te rm "?ma le (b i la ry)J ' may succeed or fa i l
depending on whether i t is a f ~ . t or not. I f this is a subgoal of a bigger
goa l , success means cont inue w i th the a t tempted proof, f a i l u re means give
up (backtrack). In fac t a goal "?ma le (X) . " might •succeed in several ways so
in general we have a branching process. . .

A (procedure) cont inuat ion is something fur ther to t ry in case of
succeu pcont=env->store->answer or mode pcont=proc(env,store)answer, it
uses. the eny and store, which a r e growing during the forward search, to
produce an "answez ~. ' ~ " : ~ ~ "~

When a subgoa] has been proved, we conLinue w i th Lhe main proof but
var iab les are loca l to the subproof so such a cont inuat ion is defined as
cont=store->answar or mode cont=proc(store)armwer. The envi ronment created
in the subproof is discarded on re turn, but any necessary va lues are passed
on in the store. A c lause denotes a prok=cont-Ystore->answer. The cont i s
to be eva lua ted in success. A question might be a s ing le term "?q." Or a
l is t "?q,r ,s;" : -a re : q a n d r and s "true? " ~' " "

ap:quest - >pnv- > env- > pcont->at ore- > answer '"
pp "?." p e pc s = pc e s # the n i l rhs#
pp "?q, r . " p b pc 's " ' ~ '~

. . . . =~pp "?q." p e dorest s ~ " "
" " "whe re dorest=(env e~store->answer: " " -~

• : ' ap ~.r, '~ p e" pc

AB 50p. 15

An Executable Pro lo9 Semantics

pp "?q." p • pc s
= p map(q,newe,news) pc(newel news

To evaluate an empty goal just evaluate the given continuation. To prove
a l i s t of terms, prove the head of the l i s t with o continuation which seeks
to prove the rest of the l ist ; this defines the le f t to r ight search within a
clause. | f there is e single term, it may contain variables. The updated
environment end store, newe and news, contain bindings of any such
variables to free locations so as to avoid name clashes; "map(q, newe,news)"
is q with the var iables so replaced. In any case, test the set of procedures
p to see i f q is provable. Note that in eva lua t ing "?q,r.", any bindings in
the unif icat ion of q are passed, in e', to the evaluat ion of "?r.".

I n the A lgo l -68 we have

prou pp=(velue quest,pnv p,onv e,
pcont pc,atoce s)answer:

i f quest b n i l then
pc(e,s)

• l s e
case quest in

(l i s t l): pp(head of 1,
p~ e,
(any e2, store s2)answer:

pp(tai l of l,p,e2,pc,s2),
S

),
(compound c):(env news= not v.interesting;

store news= di t to
p(map(c,newe,news),
(store s2)answer:

pc(newe,s2),
n e w s

))
out undefined

f i

Note that these semantics do not a l l o w for system procedures such as
assert which may update the procedure environment p.

Unif icat ion.

Unif icat ion is responsible for the matching of terms to the heads of
clauses. I f no var iables are involved this is a simple (tree) equal i ty test;
an atom matches i t se l f and structures match i f their components match.

By this stage, the term contains no variables - any s t i l l net
determined ore replaced by unique locations. An unset locat ion unifies with
a value by being bound to it. A locat ion unifies with a var iable by the
var iable becoming bound to the location, or sharing with it. A var iable
may appear more than once in a term as in "d(X,X,1).". This may resul t in

AB 50p.16

An Executable Prolog Semantics

an unset location unifying with an unset location; in this case they ore both
bound to o new unset locat ion :if ~they d i f f e r . ~" : " '

Unif icat ion usual ly proceeds l e f t Lo right across ~' te rm. ' As it
progresses the environment and the store may b e updated. At any Lime
matching may fa i l and backtracking occur. Unif icat ion con be defined in
the same way as the rest of the execution of Prolog. The definit ioq is long
because of the number of cases involving locations and variables in the
term and/or the head of the. clause and whether: they a re f irst occurrences
or not. Two of the cont ro l l ing ceseson ty ere given: : -

unify: (term x clause)->env->pcont->store->answer

1) unify "q(argsl)" "r(args2)" e pc s
= i f q=r then unify "args l " "args2" e pc s

2) unify ~al,o2 N "bl ,b2" e pc I
= unify " e l " " b l " e newpc c- • •

where newpc=(env e')store-Panswer:
unify "o2" "b2" e" pc

In A lgo l -68 this becomes

proc unify=(value term,clause,any e,pcont pc,
store s)answer:

l) i f op of term = op of head of clause then
unify(argo of term,ergo of head of clause,

e, pc, s)

2) unify(head of term, headod of clause, e,
(env e2,store s2)enswer:

uni fy(ta i l of term, ta i l of c louse,e2,pc,s2)
)

Output.

Prolog provides many standard system predicates or procedures.
of these is write.

?male(X), write(X, is,mo Is).

might resul t in

fred is mole yes

Such system procedures con be provided in an in i t ia l

One

AiD 50p .17

A. Ex,=.tab== ~ = ~ s o , . . . t ~

pnv start pnv=(value tpeont lueeeN,atore s)amwer=
i f t b a l l tiara

,ucee=(=)
e l i f ap of t = "wr i te" then

corm(mep(argl of t,rdlenv#), =ucem(I))
f l

The argument of write should contain no variable ickmtifJer8 but
contain locet iom which should be mapped to ve lum in the store.

i t might

Corm lusion.

Using Algo l -68 to code Donotationel Semantics gives 8 formal
definition that is mechanical ly checked and is executable. Such an
interpreter is a reference implementation and is very useful for
experimentation. The semantics presented here has not been compiled or
run as is, but an Algol-685113] version has been used to run simple Prulog
programs. This Algol-68S does have heap but lack of union, mult ip les in
sttruc~ and restrictions on string make this version less elegant. A shortcut
of using the standard output f i l e to take t h e anewers produced was also
used. Unify is 100 lines long; pp,~ ee and eXec together take 75 lines. The
syntax of Prelog was coded into a recursive-descent parser to bui ld the tree
for the semantics to walk.

References.
[1]. F.G.Pagan "Algol -68 as a metalanguage for DenOtational

Semantics."
Computer 3ournal V22 No1 (Feb 1979) p63-66

[2]. C.H.Lindsey "Part ia l Parameterisation"
A lgo l Bu l le t ion No 37 p24-26 (1974)

[3]. L .Al l ison "Programming Denotations1 Semantics"
Computer 3ournal Vol 4 1983 p164.

[4]. W.F.Clocksin, C.S.Mel lish Programming in Prolog
Springer Verlag 1981

[5]. M.3.C.Gordon The Donotational Definition of
Programming Languagas.

5pcinger verlag 1979

[6]. K.L.Clark, F.McCabe "The control faci l i t ies of
IC-Pro log."

in Expert Systems in the Micro-Electronic Age
D.Michie (ad) Edinbugh U.P. 1979

&B 50p. 18

An Executable Proloq Semantics

[7]. L.Naish "MU-ProJog 3.0 refererme marlual"
Melbourne University May 1983

[8]. L.Pautsen "A Semantics Directed Compiler Generator"
9th Annual Symposium on Principles of Programming
Languages 3an 1982 p224-233 • -

[9]. M.R.Rmkovsky "Denotetional Semantics as a
SpeCification of Code generators"

Proc" 1982 Sigplan Conference on Compiler Construction
3une 1.982 p230-244

[10]. R.Sethi "Control F low aspects of Semantics Directed
Compil ing."

Proc" 1982 Sigplan Conference on Compiler Construction
3une 1982 p245-260

[11]. N.D.3ones, A.M.Mycroft "5tepwise Development of
Operational and Denotetional SemanLics for Prelog."

Draft version Apri 1- 83
Copenhagen University/Edinburgh University

[12]. 3-L.Lassez, M.3.Maher "Closure and Fairness in the
Semantics of Proqremming Logic."

Univscsity of Melbourne 1983

[111 C.H.Lindsey "Algol-685 system"
University of Manchester 1982

AB 50p. 19

As50.4.2 A Library Mepchsnism for tl'wp CDC, AIg01 68 Compiler

by David A.d. Outterldge
(Martin Marietta Corporation, Denver,Colorado, U.S.A.)

Summary.

Algo l 68 has no machine- independent cons t ruc t to a l l o w the use o f l i b r a r y
f a c i l i t i e s . However in the CDC imp lementa t ion use is made o f pragmats to
o f f e r the user the o p p o r t u n i t y both to access s e p a r a t e l y compi led code and
to make a d d i t i o n s to the s tandard p re lude . This a r t i c l e desc r ibes a method
- implemented and in use fo r over th ree years - whereby these a v a i l a b l e
f a c i l i t i e s are used to c rea te a system tha t enables a user to c r e a t e , use
and ma in ta i n ex tens i ve modular l i b r a r i e s in a s imp le way. An A l g o l - l i k e
c o n s t r u c t tha t cou ld be cons idered machine- independent is used in programme
source code to access requ i r ed modules from the d e s i r e d l i b r a r y .

Introduction.

A l i b r a r y o f ope ra to rs appears to be a sucession o f small p ieces o f code;
and one would expect to draw on on ly a few ope ra to r s in a p a r t i c u l a r p ro-
gramme. CDC desc r i be t h e i r A lgo l 68 comp i le r p r e l u d e - a d d i t i o n f a c i l i t y as
l i b r a r y a d d i t i o n ; hence one produces a " l i b r a r y - p r e l u d e " . These f ac t s led
the au thor , at tha t t ime engaged in mode l l i ng a phys i ca l eng ineer ing
problem and b l i s s f u l l y unaware o f what was happening in the computer, to
c rea te a la rge , mos t l y dormant, l i b r a r y - p r e l u d e . So la rge a p re lude tha t
one day a p a r t i c u l a r programme f i l l e d up a11 a v a i l a b l e m~mory on the Cyber
i n use at the t ime. The r e l e v a n t c h a r a c t e r i s t i c i s tha t a l l the a d d i t i o n a l
(user) code is loaded at assembly- t ime ra the r than the small percentage
tha t i s a c t u a l l y used; a l l the code i s compi led i n t o one module.

A f t e r a shor t p e r i o d o f d i c u s s i o n , du r i ng which the l ea rn ing r a t e was pos i -
t i v e l y as t ronomica l , the neophyte accepted w i t h g r a t i t u d e the o f f e r from
the Data Systems D i v i s i o n o f the company to p rov ide a more s u i t a b l e system.
This system has grown s i g n i f i c a n t l y , g r a d u a l l y becoming more s o p h i s t i c a t e d
in c a p a b i l i t y so tha t now i t p rov ides a l i b r a r y use and man ipu la t i on
mechanism tha t i s f l e x i b l e and ye t r e t a i n s a l l the checking o f the CDC
c o m p i l e r .

Advantages o f the system inc lude the a b i l i t y to w r i t e number-crunching
r o u t i n e s in op t im i sed For t ran or Compass (assembly code) in a way tha t i s
u s e r - t r a n s p a r e n t and tha t may be done in a s e l e c t i v e manner so tha t run-
t ime checking may be c a r r i e d out u n t i l there is no f u r t h e r p o i n t . As an
example: an A lgo l m a t r i x m u l t i p l i c a t i o n r o u t i n e can do bound checking and
matching and then c a l l op t im i sed For t ran Code to do the work. Perhaps i t
i s necessary to b r i n g t h i s approach i n t o p e r s p e c t i v e by p o i n t i n g out tha t
i t can reduce run t ime by a f a c t o r o f f ou r ; CDC op t im i sed For t ran is f a s t .

The l i b r a r y system is b e l i e v e d to be t o t a l l y secure at c o m p i l e - t i m e (as
opposed to a d o - i t - y o u r s e l f access to s e p a r a t e l y compi led code) as w i l l
be exp la i ned . However at the t ime o f w r i t i n g t h i s paper there is no check
made at assembly t ime tha t the module be ing loaded is indeed the one

AB 50p. 20

thai was in the l ib rary at compile time (i .e . the one intended to be used).
I t is hoped to introduce a "date-stamping" system simi lar to that used in
Algol 68R - but presumably then there w i l l be the frequent necessity to re-
compile mentioned in AB 48.4.2; however i t is thought that this is
preferable to disastrous results, and an up-daZe compilation of one module
is possible which eases the problem somewhat.

Despite the objections that may be made about the l ib ra ry system when
viewed from an academic viewpoint - i t is messy, involving a pre-processer
and a s igni f icant amount of operating system control - perhaps i ts greatest
v i r tue is that i t is here and i t works. The l ib rary system enables
pract ical engineering analysis of s igni f icant problems in a way that would
not be possible without i t .

CDC Syntax.

To create a l ibrary-prelude i t is necessary both to submit source code to
the compiler in special format and to signal that one wishes to compile in
prelude addition mode. The la t te r is effected simply by including an "N"
in the compiler parameter l i s t . The special format for the addition source
code is as f o l l o w s :

MODULE: ('C' PRELUDE SOURCE CODE ' C ' ;
'PR' PROG 'PR'

'C' POSTLUDE SOURCE CODE 'C')

MODULE is used as the module name for later iden t i f i ca t ion , when the
l ib rary is used the PROGramme w i l l be embedded in the pre/postlude as
indicated.

The d e s i r a b i l i t y of adding to the postlude is not immediately apparent. An
example is: suppose a l ib rary were created for a series of prograrnmes that
ca l l Fortran sub-routines that involve transput. Since no Fortran main
programme exists i t would be necessary to open and close the required
system f i l e s wi th in the Algol main programme. Suppose the procedures that
do this opening and closing are "enable fortran transput", "required
fortran tapes ('C' l i s t 'C ') " and "disable fortran transput". In this case
i t might be appropriate to mare the f i r s t procedure ca l l in the prelude,
the second in each par t icu lar programme with a set of file-name parameters,
and the th i rd in the postlude. Not closing the f i l e s might well result in
lost data.

Separately compiled code is treated as the de f in i t ion of the unit of a
routine. The whole routine then may be ascribed to an operator or
procedure i den t i f i e r as in the examples below; a programme not using
separately compiled code is given f i r s t for comparison.

A SIMPLE PROGRAMME:

LEADING LABELS ARE OPTIONAL, BUT IF PRESENT THE FIRST SEVEN NON-SPACE
CHARACTERS ARE USED BY THE COMPILER TO NAME THE MODULE; ELSE: A68PROG #

'BEGIN'
'REAL' X; READ (X);
WRITE (("X IS: " FIXED (X, -8, 2), NEWLINE))

'END' # OF A SIMPLE PROGRAMME #

AB 5Or. 21

A SEPARATELY COMPILED ROUTINE:

'BEGIN'
'PROC' DOUBLE = ('REAL' Y) 'REAL': 'PR' XDEF TWICE 'PR'

TWICE IS THE ENTRY POINT OF MODULE ASEPARA #

'BEGIN' # OF UNIT #
2 * Y # YIELD #

'END' # OF UNIT #

'PR' FEDX 'PR ' ; # END OF PROCEDURE DEFINITION #

'SKIP' # AN ALGOL PROGRAMME MAY NOT END WITH A DECLARATION #
'END' # OF THE SEPARATELY COMPILED CODE #

'BEGIN'

'END'

CALLING PROGRAMME:
* * ~ * * ~ * * * * * * * * * #

'REAL' X; READ (X);

'PROC' DOUBLE = ('REAL'

WRITE (("TWICE X IS: ",

Y) 'REAL': 'PR' XREF TWICE ' P R ' ' S K I P ' ;

XREF THIS TIME #

FIXED (DOUBLE (X), -8, 2) , NEWLINE))
OF THE CALLING PROGRAMME #

The sepa ra te l y compi led code may be w r i t t e n in another language,
u s u a l l y For t ran or Compass:

FUNCTION FOURX (X)
FOURX = 4 * X
RETURN
END

Called by: 'PROC' QUADRUPLE = ('REF' 'REAL' X) 'REAL':
'PR' XREF A68FTN, FOURX 'PR' 'SKIP';

Note tha t the For t ran r o u t i n e requ i r es the address o f X.

Before con t i nu ing w i t h the d e s c r i p t i o n o f how these two cons t r uc t s are
used in the l i b r a r y system s t r u c t u r e i t i s po in ted out t ha t w i t h the
separa te c o m p i l a t i o n mechanism desc r ibed , r e s p o n s i b i l i t y f o r c o r r e c t l y
matching the i n t e r f a c e s o f the c a l l i n g and c a l l e d modules l i e s e n t i r e l y
w i t h the code w r i t e r . Not on l y is no check c a r r i e d out at load t ime,
but n e i t h e r is i t p o s s i b l e to check at compi le t ime - the nKxluies are
compi led s e p a r a t e l y a f t e r a i] . This is u n f o r t u n a t e fo r i t means tha t
j u s t a t the t ime when i t i s l i k e l y tha t mis-match e r r o r s w i l l occur they
are not checked f o r .

Also note tha t the l i b r a r y system about to be desc r ibed does not p rec lude
a user from using the pragmat system shown above; i t is supplementary.

AB 50p. 22

L ib rary , S t r uc tu re .

The fundamental ideas behind the l i b r a r y s y s t e m are:

i)

i i)

i i i)

to extend the s tandard prelude to the minimum degree p o s s i b l e
c o n s i s t a n t w i t h ach iev ing the requ i red e f f e c t , t h i s min imises the
amount of space used at r u n - t i m e . (However the user has f u] | c o n t r o l
over the s ize o f p re lude ; he can r e j e c t t h i s o b j e c t i v e) .
to p rov ide a (l a rge) number o f modules which may be accessed v ia
the separate c o m p i l a t i o n pragmat as r equ i r ed . By c a]] i n g on ly those
modules requ i red a user may min imise the amount of space used at
r un - t ime .
to p rov ide a s imple mechanism to automate the accessing process
fo r the user to avo id as many e r r o r s as p o s s i b l e .

Using a L i b r a r y , User Source Code,

A user has an index o f a v a i l a b l e modules in a g iven l i b r a r y , toge ther
w i t h the complete p re lude , on the "headers" f i l e ; see appendix A. A
means o f r e a d i l y accessing t h i s l i b r a r y i n f o r m a t i o n is a v a i l a b l e and
norma l l y the user would have a hard-copy fo r re fe rence . Having decided
which modules he needs, a user in t roduces them where he chooses in h is
p a r t i c u l a r programme v i a the " i nc l ude " s ta tement :

' INCL' MODULE NAMES SEPARATED BY COMMAS 'LCNI'

This s tatement may be put anywhere i t i s lega l to d e c l a r e i d e n t i f i e r s ,
and d u p l i c a t e c a l l s to modules are ignored so tha t on l y one d e c l a r a t i o n
o f a g iven module is made (t h i s i s impor tan t s ince l i b r a r y modules may
c a l l o the r l i b r a r y modules). From the use r ' s p o i n t o f v iew the e f f e c t is
the d e c l a r a t i o n - s e r i a l , not c o - l a t e r a l - o f the r equ i r ed procedures and
ope ra to rs in p lace of the inc lude s ta tement . M u l t i p l e use o f the inc lude
statement r e s u l t s in m u l t i p l e sets o f d e c l a r a t i o n s , and d u p l i c a t i o n in t h i s
case is d e a l t w i t h by t h e scope ru l es o f the language. N a t u r a l l y the
c o r r e c t p re lude must be used when comp i l i ng p a r t i c u l a r programme source
code; t h i s i s s imply a mat te r o f s p e c i f y i n g the n~:x:lule name when c a l l i n g
the comp i l e r , the d e f a u l t be ing the s tandard p re lude .

Thus, th ree th ings are r e q u i r e d o f a user who wishes to use modules on
a l i b r a r y :

i) i n c l u s i o n o f a l i s t o f the r equ i r ed modules in p a r t i c u l a r programme
source code.

i i) s p e c i f i c a t i o n o f the requ i r ed l i b r a r y at compi le t ime v ia ope ra t i ng
system commands.

i i i) ensur ing the l i b r a r y a v a i l a b i l i t y at both compi le and load t ime.

Appendix B con ta ins a sample programme and the r e s u l t a n t l i s t i n g a f t e r p re -
p rocess ing and submission to the comp i l e r .

Mechanism o f the Pre-Processer .

do in t examinat ion o f appendices A and B w i l l unve i l any mystery about the
code convers ion the p re -p rocesse r e f f e c t s . Consider fo r example the
d e c l a r a t i o n o f the ope ra to r + on l i nes 4 and 5 o f the l i s t i n g in appendix
B. The p re -p rocesser s imp ly has i n s e r t e d the ope ra to r d e c l a r a t i v e and

ABSOp.23

formal parameter par ts o f the module headers en t r y from appenoix A i n t o the
source code, and then s tu f f ed the module name i n t o the app rop r ia te pragmat
that announces the module as sepa ra te l y compi led. The inc lude statement as
such is removed.

The reader should not miss the bonus that this linkage provides: by
introducing source code from the l ibrary into the part icular programme
code the pre-processer relieves the part icular programme writer of the
responsibi l i ty of checking the code interface. The compiler is able to
do fu l l checking to ensure correct usage; this is considered to be a
signif icant improvement over a method relying on human actions.

L ib ra ry source code format.

L i b r a r i e s are requ i red to have spec ia l layou t , p a r t l y to enable the
product ion o f the l i b r a r y headers and p a r t l y because a few r e s t r i c t i o n s
make the pre-processer a l o t s impler . Appendix C conta ins par t o f the
vector l i b r a r y used in the example; however f u r t he r d e t a i l o f the spec ia l
layout and spec ia l ru les fo r l i b r a r y w r i t e r s w i l l not be spe l t out here.

Library Manipulation.

The encouragement of source code generality and subsequent public avai l -
a b i l i t y of useful routines is hardly a new idea; however a side-benefit of
the l ibrary system described is a furthering of this end.

A col lect ion of operating system command procedures has been written with
the objective of assisting use of Algol 68 on the CDC Cyber; and, from a
practical point of view, i t is pointless not to use the l ibrary generation
routines. The resultant common usage results in common l ibrary design;
leading in turn both to a common header's format which aids human
comprehension, and the capabi l i ty of manipulating (operating on) l ibrar ies
with other operating system procedures. Thus, in addition to the vector
l ibrary, there exist other basic l ibrar ies such as a graphics l ibrary,
a matrix l ibrary and a transput l ibrary. And these basic l ibrar ies may be
combined as required using the appropriate operating system routine to
provide the l ibrary most suitable for the job in hand. The only
restr ict ions are those concerning compatibi l i ty of the constituent
l ibrar ies; for example since the prelude/postlude source codes are
assembled i n t o one source code deck and re-compi led i t is necessary that
there be no d u p l i c a t e d e c l a r a t i o n s .

Once assembled t h i s ta i l o r -made l i b r a r y is mach ine - i nd i s t i ngu i shab le from
any other l i b r a r y and the man ipu la t ion process may cont inue. One usefu l
l i b r a r y opera t ion enables the ex tens ion o f an e x i s t i n g l i b r a r y w i th f u r t he r
source code. Hence there e x i s t s a l i b r a r y used for i n v e s t i g a t i o n o f
s a t e l l i t e s that is based on the vector l i b r a r y and one o ther , but which
conta ins an o r b i t - s p e c i f i c p re lude /pos t l ude and many ex t ra modules.

I t is r e - i t e r a t e d that the advantages o f t h i s system of l i b r a r y con t ro l
and man ipu la t ion are ease-of -use and complete compi ler checking o f
i n te r faces at p a r t i c u l a r programme comp i l a t i on t ime.

AB 50p. 24

Other uses.

I t appears that by using a number o f system-dependent pre-processers a
f a i r amount o f code p o r t a b i l i t y could be mainta ined, a l though the human
management o f such a scheme would not be i n s i g n i f i c a n t . I t appears that
the on l y requirements o f the implementat ion are some - codable - means
of accessing ex te rna l modules and the a b i l i t y to extend the pre lude.

Acknow 1 edqemen t s.

Development of the CDC L ib ra ry Mechanism descr ibed has been brought about
w i th the f a c i l i t i e s prov ided by the Mar t in Mar ie t ta Corporat ion, and by
assistance in var ious forms from the f o l l o w i n g co l leagues: Beth B idd le ,
George Hey l iger , Damon Ostrander, dim Randolph, Dwight Rudolph, Wayne Simon
and dohn U l r i ch .

VECLIB

FTANPI
XCORDt
XCORON
YCORD1
YCORON
ZCORDI
ZCORON
POSVEC
SUMVEC
NEGVEC
DIFVEC
ISTVEC
RSTVEC
VECTIS
VECTRS
VECINN
VECPRb
VECOIS
VECQRS
PABVEC
PBBVEC
MABVEC
MBBVEC

: (# VECLIB. LAST REVISION t9 MAY 1983, ADDED MIN REAL.

THIS IS A LIBRARY OF OPERATORS AND PROCEDURES FOR USE WITH THE
MODE 'VEC' . A NORMAL INTERPRETATION OF WHICH IS THAT OF A THREE-
DIMENSIONAL SPATIAL VECTOR, #

'PRIO' >< 7,
'SCALEDTO' 9,
'MADEPERPTO' 6.
"PARLTO' S,
'PERPTO' 5;

'REAL' MIN REAL s 3 . 0 E -293;

'REAL' SMALL NUMBER CLOSE TO MACHINE LIMIT

'MODE"

'PROC'

APPENDIX A. TYPICAL LIBRARY HEADERS

tE6 * MIN REAL;

THE CDC IS NOT SYMMETRIC, THIS IS A TEMPORARY
F I L L - I N .

USED IN OPERATORS "SMALL'.

'VEC' 'STRUCT' ('REAL ' XCOORD. YCOORD. ZCOORD); MODE DECLARATION.

ON INDETERMINATE VECTOR : - ('VEC ' V) EVENT ROUTINE FOR RUN-TIME CREATION OF AN
INDETERMINATE VECTOR SUCH AS THE UNIT VECTOR

' V O I D ' : (WRITE ((NEWLINE. "ATTEMPTED CREATION OF AN", OF THE ZERO VECTOR; USER ALTERABLE.
" INOETERMINATE VECTOR.". NEWLINE, "INPUT " .

"VECTOR IS PRINTED BELOW AND PROGRAMME".
" TERMINATED.". NEWLINE. NEWLINE, V)) ; STOP);

'pR'PROG'PR'
' S K I P ')

'PROC'
'OR'
'OR'
'OR'
'OR'
'OP'
,Op t
'OR'
,ORe
'OP'
'OP'
'OP'
'OP'
,Opt
'OP'
'OP'
'OP'
'OP'
' O P '
'OR"
"OP'
"OP"
' O P '

END OF VECLIB PRELUDE.
END OF VECLIB POSTLUDE.

PIARCTAN =
"X '
' X '
, y ,
, y ,
"Z '

' Z '
+
+

=
* •

><
/
/
÷:=

'PLUSAB'
- : s

'MINUSAB'

'REAL' SIN. COS) 'REAL ' :
"VEC' U) "REAL':
{} 'VEC' V) {) 'REAL ' :
'VEC' U) 'REAL ' :
() 'VEC' V) () 'REAL ' :
'VEC' U) 'REAL ' :
() 'VEC' V) () 'REAL ' :
'VEC' U) 'VEC' :
'VEC' U.
'VEC' U)
'VEC' U.
' I N T ' I ,
'REAL' R,
'VEC'
'VEC'
'VEC"
'VEC'
'VEC'
'VEC'
'REF'
'REF'
'REF'
'REF"

U,
U.
U.
U.
U.
U.

'VEC" U.
'VEC' U.
'VEC' U.
'VEC' U,

V) "VEC':
'VEC' :
V) 'VEC' :

'VEC' U) 'VEC"
'VEC' U) 'VEC'
' I N T ' I) 'VEC"
"REAL' R) aVEC'
V) 'REAL ' :
V) 'VEC' :
' I N T ' I) 'VEC'
'REAL' R) ~VEC':

'VEC' V) 'REF' 'VEC' :
'VEC' V) "REF" 'VEC' :
'VEC' V) 'REF' 'VEC' :
sVEC' V) "REF' 'VEC' :

THE ARCTANGENT OF SIN/COS ON (- P I . P l) .
X CO-ORDINATE OF U.
THE X CO-ORDINATE ROW OF A ROW OF VECTORS.
y CO-ORDINATE OF U.
THE Y CO-ORDINATE ROW OF A ROW OF VECTORS.
Z CO-ORDINATE OF U.
THE Z CO-ORDINATE ROW OF A ROW OF VECTORS.
MONAOIC POSITIVE FOR A VECTOR.
THE SUM OF TWO VECTORS.
NONAOIC NEGATIVE FOR k VECTOR.
THE DIFFERENCE OF TWO VECTORS.
PRODUCT OF INTEGRAL SCALAR AND VECTOR.
PROOUCT OF REAL SCALAR ANO VECTOR.
PRODUCT OF VECTOR AND INTEGRAL SCALAR.
PRODUCT OF VECTOR ANO REAL SCALAR.
THE INNER OR DOT PRODUCT.
THE VECTOR OR CROSS pRODUCT.
QUOTIENT OF VECTOR AND INTEGRAL SCALAR.
QUOTIENT OF VECTOR AND REAL SCALAR.
PLUS-AND-BECOMES FOR A VECTOR.
PLUS-AND-BECOMES FOR A VECTOR.
MINUS-AND-BECOMES FOR A VECTOR.
MINUS-AND-BECOMES FOR A VECTOR.

AND SO ON

q3

'BEGIN'
' I N C L '

VECPRO, # THE VECTOR PRODUCT #
SUMVEC, W THE SUM OF TND VECTORS #

'SKIP*
'LCNZ' ;

'VEC" V I . V2, V3, V4: REAO ((V t , NEMLXNE,

V4 : - VI >< (V2 + V3) :

WRITE (('THE ALGORITHM RESULT 1S: " , V 4)) ;

" S K I P "
"END" # OF A DEMONSTRATION PROGRAMME #

v2, NEWLINEo v 3)) ;

APPENDgX B, A DEIqONSTRAT|ON

r ~

* SOURCE LISTING * A68 1 .3 .1 82330 8 3 / 0 9 / 0 t . 12 .07 .33 . PAGE t

t . 'BEGIN'
2.
3.
4. 'OP' + - ('VEC ' U, V) 'VEC' :
S. 'PR' XREF SUMVEC 'PR' ' S K I P ' ;
6. 'OP' >< • ('VEC ' U, V) 'VEC' :
T. 'PR t XREF VECPRO 'PR' ' S K I P ' ;
8.
9.

10.
t t . 'VEC' V l , V=, V3~ V4; READ ((V I , NEWLiNE,
12.
13. V4 : - V l >< (V2 + V 3) :
54.
15. WRITE (("THE ALGORITHM RESULT IS : " , V 4)) ;
16.
17. ' S K I P '
18. "END" # OF A DEMONSTRATION PROGRAMME #

PROGRAM LENGTH 0002238 WORDS
REQU;RED CM 052E00. CP .410 SEC.
SPECIFIED OPTIONS ICLBOP

V2, NEWLINE, V 3)) ;

'ID

VECLIB : (# VECLIB . LAST REVISION t 9 MAY 1983, ADDED MIN REAL.

THIS IS A LIBRARY OF OPERATORS AND PROCEDURES FOR USE WITH THE
MODE ' V E C ' , A NORMAL INTERPRETATION OF WHICH IS THAT OF A THREE-
DIMENSIONAL SPATIAL VECTOR.

' P R I O ' >< T,
'SCALEOTO' 9 ,
'MADEPERPTO' 6 ,
'PARLTO' 5 ,
'PERPTO' 5 ;

APPENDIX C. TYPICAL LIBRARY SOURCE CODE

~0

'REAL ' MIN REAL = 3 . 0 E - 2 9 3 ;

'REAL ' SMALL NUMBER CLOSE TO MACHINE L I M I T " tE6 * MIN REAL;

THE CDC IS NOT SYMMETRIC, THIS IS A TEMPORARY
F I L L - I N .

USED IN OPERATORS ' S M A L L ' .

'MODE' "VEC' 'STRUCT' (' R E A L ' XCOORD, YCOORD, ZCOORD); MODE DECLARATION.

'PROC' ON INDETERMINATE VECTOR : " (' V E C ' V) EVENT ROUTINE FOR RUN-TIME CREATION OF AN
INDETERMINATE VECTOR SUCH AS THE UNIT VECTOR

" V O I O ' : (WRITE ((NEWLINE, "ATTEMPTED CREATION OF AN* , OF THE ZERO VECTOR; USER ALTERABLE.
" INDETERMINATE VECTOR." , NEWLINE, " INPUT " ,

"VECTOR IS PRINTED BELOW AND PROGRAMME',
" TERMINATED." , NEWLINE, NEWLINE, V)) ; STOP);

'PR 'PROG'PR*
' S K I P ')

END OF VECLIB PRELUDE.
END OF VECLIB POSTLUDE.

FTANPI "PROC' PIARCTAN " (' R E A L ' S IN , COS) ' R E A L ' :

(' R E A L ' S := S IN , C : - COS;
'PROC' ATAN2 - ('REF''REAL' S2, C2) ' R E A L ' :

' P R ' XREF A68FTN, ATAN2 ' P R ' ' S K I P ° ;
ATAN2 (S , C)) ;

THE ARCTANGENT OF SIN/COS ON { - P I , P I) .

UNTVEC

" I N C L '

ROTVEC

' I N C L '

' O P ' ' E ' (' V E C ' U) ' V E C ' : UNIT VECTOR IN THE DIRECTION OF U.

ABSVEC, VECDRS ' L C N I ' :

(' R E A L ' ABSU " ~ABS" U;
(ABSU • SMALL NUMBER CLOSE TO MACHINE L I M I T I U / ABSU

: ON INOETERNINATE VECTOR (U) ; ' S K I P ')) ;

"PROC s ROTATION OF = (' V E C " V, AX IS , 'REAL ' ANGLE) ' V E C ' : ROTATES V ABOUT AXIS THROUGH ANGLE
ACCORDING TO RIGHT HAND RULE.

VECTRS, SUMVEC, VECPRO, UNTVEC " L C N I ' :

(' V E C ' AX - " E ' A X I S ; 'VEC ' AXV = AX >< V; ' V E C ' V P " AXV >< AX;
V + VP * (COS (ANGLE) - t) + AXV * S IN (ANGLE)) ;

