ISSN 00846198

Algol Bulletin no. 50

DECEMBER 1983

CONTENTS PAGE
ABS50.0 Editor's Notes 2
AB50.1 Announcements
AB50.1.1 The B Newsletter 3
ABS50.1.2 IFIP - its aims & its recent publications 3
AB50.1.3 Programming Languages and Systems 3
AB50.1.4 Book Review - Guide to ALGOL 68 4
AB50.1.5 IFIP Working Conference on Problem Solving
Environments for Scientific Computing 5
AB50.3 Working Papers
AB50.3.1 The Art and Science of Programming 6
ABS50.4 Contributed Papers

0.4.1 Lloyd Allison, An Executable Prolog Semantics 10
50.4.2 David Ooutteridge, A Library Mechanisn for the
CDC ALGOL 68 Compiler 19

AB 50p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Pederation for Information Processing (IPIP WG2.1,
Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of IPIP:

*The opinions and statements expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IPIP undertakes no
responsibility for any action that might arise from such statements. Except
in the case of IFIP documents, which are clearly so designated, IPIP does not
retain copyright authority on material published@ here. Permission to
reproduce any contribution should be sought dJdirectly from the authors
concerned. No reproduction may be made in part or in full of dAocuments or
working papers of the Working Group itself without permission in writing
from IFIP."

Pacilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester. Word-processing
facilities have been provided by the Barclay's Microprocessor Unit, University of
Manchester, using their Vuwriter system. :

The ALGOL BULLETIN is published at irregular intervals, at a subscription of
$11 (or £6) per three issues, payable in advance. Orders and remittances (made
payable to IFIP) should be sent to the Editox. Payment wmay be made in any currency
(a list of acceptable approximations in the major currencies will be sent on
request), but it is the responsibility of each sender to ensure that his payment
is made in accordance with the currency requirements of his own country.
Subscribers in countries from which the export of currency is absolutely
forbidden are asked to contact the Editor, since it is not the policy of IFIP that
anyone should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
Univergity of Manchester,
Manchester, Mi3 SPL,
United Kingdowm.

Back numbers, when available, will be sent at $4.50 (or £2.40) each. However,
it is regretted that only AB32, AB34, AB35, AB36, AB38—43 and AB45 onwards are
currently available. The Editor would be willing to arrange for a Xerox copy of
any individual paper to be made for anyone who undertook to pay for the cost of
Xeroxing.

AB 50p.2
ABS0.0 EDITOR'S NOTES.

ALGOL 68 Standardization

I mentioned in the last issue that the proposals to produce an International
Standard for ALGOL 68 were about to go to a letter ballot within ISO. This
produced an overall majority in favour, and even five coutries willing to
participate in preparing the Standard (W. Germany, Belgium, Netherlands, U.S.S.R
and Czechoslovakia), Dbut unfortunately two of the would-be participators
(U.S.S.R. and Czechoslovakia) were not the right kinds of member of the right ISO
committees, and so the project 4Aid not get through. Thus we are now struggling in
the mire of ISO politics and, unless some additional coutries can be persuaded to
support it, or unless the rules within ISO can be changed or circumvented, the
proposal will likely fail.

ALGOL 60 Standaxdization

I said in the last issue that ISO 1538 was about to be published. This still
seems to be the situation (ISO politics again).

Activities of IFIP TC2

TC2 is the parent committee of Working Group 2.1 (indeed, the ALGON Bulletin
is, strictly speaking, a TC2 publication). The article in this issue (AB50.3.1) is
wainly a public relations exercise on the part of IFIP, but it does at least serve
as a useful reference as to what each Working Group is supposed to be about. There
is a general permission to reproduce the article in whole or in part, provided the
original author is acknowledged, and that it is made clear if any truncation or
editing has taken place.

Survey of viable implementations

In AB47.3.3 1 published a list of viable implewentations of ALGOL 68. I
intend to publish an updated version in the next issue, and I therefore solicit
details of their offerrings from any implementors of the language who were not
included previously. The only conditions for inclusion are that the
implementation is available for distribution, and that it is already in use on at
least two sites.

In the meantime, you might like to know that ALGOL 6BC is now available for
the DEC VAX (under Berkeley Unix 4.2) from the ALGOL 68C Distribution Service,
Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG, UK. Also that ALGOL
68RS on the VAX (from S.P.L.) is imminent.

AB 50p.3
ABS0.1 Announcements.
AB50.1.1 The B Newsletter

Those interested in the B programming language (see AB48.4.1 for an
introductory tutorial) may be interested in the B Newsletter which will be
distributed regularly by the Informatice Department, Mathematical Centre, POB
4079, 1009 AB Amsterdam, The Netherlands. The first issue, dated August 1983,
listed the various Technical Reports on the language that are available, and gave
information about the pilot implewmentation (UNIX VAX or PDPll) and the
soon—to-be—released portable implementation (written in C).

AB50.1.2 1FIP — its aims & its recent publications

Noth-Holland has recently published a bocklet entitled "IPIP, its aims & its
recent publications"., The brochure presents a detailed description of IFIP
(International Pederation for Information Processing), as well as full details on
55 books reflecting the interest-sphere of IPIP: Programming, Education, Computer
Allpications in Technology, Data Communications, System Modelling and
Optimization, Information Systems, Computers and Society, Digital Systems Design.

IFIP publications are available to members of national information
processing societies at a 25% discount.

write for your copy of the brochure to: North-Holland Publishing Company,
Attn: Joop Dirkmaat, P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

AB50.1.3 Programming Languages and System Design

This book, edited by J. Bormann and published by North-Holland, comprises
the Proceedings of the IFIP TC2 Working Conference on Programming Languages and
System Design, held in Dresden (GDR) on 7-10 March 1983, under the joint
spongorship of IFIP WG2.1 and WG2.4. 1t contains the texts of the following

papers:

Fast Automatic Liveness Analysis of Hierarchical Parallel Systems, by J.
Roehrich,

Concatenable Type Declarations - Their Applications and Implementation, by
A. Kreczmar and A. Salwicki.

Oon the Coherence of Programming Languages and Programming Methodology, by M.
Broy and P. Pepper.

On the Design of Data Abstraction Mechanisms for Compiler Description
Languages, by H. Ganzinger.

The Remodularization of a Compiler by Abstract Data Types, by K. Bothe.

Experience with Abstract Data Type Specifications in a Compiler Project, by
U.L. Hupbach and H. Kaphengst.

XYZ: A Program Development Environment Based on Temporal logic, by C.S.
Tang.

Programming in SETL Environment, by D.Y. Lewvin.

AB S0p.4

Design and Verification Oriented Microprogram Transformations, by D.
Dembingki.

ELSA - An Extensible Programming System, by C.H. Lindsey.

A Skeleton Interpreter for Specialized Languages, by J. Steensgaard-Madsen.

Comparing PASCAL and MODULA-2 as Systems Programming Languages, by P.H.
Hartel.

Early Experioence with the Programming lLanguage ADA, by G. Persch, M.
Dausmann and G. Goos.

There are also the transcripts of two discussion sessions.

Price information is not curenmtly available, but presumadbly the 25%
discount to memwbers of national information processing societies (see previous
section) will apply.

AB50.1.4 Book Review : Guide to ALGOL 68 -~ for users of RS Systems

by Philip M. Woodward and Susan G. Bond
160pp. Publ. Edward Arnold, £5.95.
ISBN O 7131 3490 9.

Those who have used the previous "yellow" and "green” books (H.M.S.0) by
Woodward and Bond (which were companions to the original Malvern ALGOL 68R) will
imediately recognise the practical style and headlong pace of this new book. Every
important fact about ALGOL 68 is there, but is mentioned only once, so do not
blink as you read the book.

Thus the book is not for raw beginners - nor even for the hobbyist who thinks
computing is just the BASIC provided on one of Mr Sinclair's toys. But for the
user of FORTRAN, or PASCAL (or even ADA), whose disillusionment with those
languages is not yet quite complete, it is ideal. Although intended primarily for
users of the Malvern-developed RS compilers (as implemented on the ICL 2900, the
Honeywell Multics and, soon to come, on the DEC VAX), the discrepancies between
ALGOL 68RS and the language of the Revised Report are meticuloulsy (and mostly
uncbtrusively) recorded, so users of other systems need have no fear. Errors of
commission are conspicuously absent (I hope the remark about implementors keeping
line buffers in their FILE structures was not really intended) and@ errors of
omission are few (but I could not find, for example, any mention that I could
include the word LOC in a variable-declaration, nor any mention of PRAGMATS, nor
of mode—equivalence). On the other hand, good programming style is well described
(if you excuse Philip Woodward's morbid fear of using the heap), and the section
on list processing, with full discussion of the "3-REF trick", is particularly
thorough.

As a work of reference, the book is less successful (in spite of claims in
the introduction to the contrary). The facts are all there and will be found on
sequential reading, but it appears that set is not possible. I looked in vain in
the index for the word "scope* (they tend to misuse the word "range"” when
discussing. this matter, but even that word in the index did not lead me to the
discussion of scope violations). Thus, as a reader of the ALGOL Bulletin and
therefore already presumably having a good knowledge of the language, there would
not be much gain in buying the book for yourself. But it would make an ideal
Christmas present for your friends.

C.H. Lindsey.

AB 50p.5

AB50.1.5 Preliminary Conference Announcement.

IFIP Working Conference on Problem Solving Environments for Scientific Computing

IFIP TC2 will be holding a working conference on "Problem Solving Environments
for Scientific Computing" at the INRIA-SOPHIA-ANTIPOLIS Laboratory in France
on the 17th - 218t June 1985. A Problem-Solving Environment (PSE) is an
integrated multi-tasking system that supports the solution of a given problem.
In many scientific areas, computer software has been developed with
specialised high-level languages, complex data structures, graphical displays
and post-processors. Such packages allow the user to employ the terminology
of the problem area, remove the need to become involved in low-level
programming details and maximise productivity.

Work on PSEs has led to the development of facilities directed to specific
problem areas. For example, expert systems involve automated reasoning, data
base manipulation and question and answer sessions. Statistical PSEs have
emphasised problem oriented languages. In the CAD/CAM environment data
display and the use of display equipment are crucial. The aim of the
conference is to bring together workers on scientific packages and on PSEs to
exchange ideas and experiences.

We shall examine PSEs in scientific applications with particular emphasis on
the role of numerical computing. Rather than review a number of existing
systems in detail, we hope to consider the overall specification, construction
and development of a PSE., To this end some topics of interest are:

comparison of self-contained and open systems; applicability of knowledge-
based techniques to numerical problems; integration and design of a user
interface; achievement of clean dataflow handling; data display; selection
and design of implementation language; design, transformation and
maintenance of integrated data structures; support, parsing and processing
of user dialogue; use of reliable numerical algorithms and diverse)
hardware; interpretation and summary of results; and the impact of personal
computers and scientific workstations.

The meeting will include both invited and contributed papers. One session
will be reserved for discussion of issues that arise during the conference.
Time will also be included for demonstration of PSEs by attendees, who will be
responsible for provision of their own computing resources (although some
local assistance with electrical power and modem contact will be available).
Substantial time in the programme will be allocated to discussion. The
proceedings, including an edited transcript of the discussion, will be
published.

In order to preserve a "workshop'" atmosphere the number of participants will
be limited to approximately 80.

Those interested in attending should write to the Conference Chairman,

B. Ford, NAG Central Office, 256 Banbury Road, Oxford 0X2 7DE, England
preferably including a brief description of their work and interests in the
area, to support their application. Please also indicate whether you will be
able to finance your own expenses; we are applying for financial support, but
this is unlikely to extend beyond partial support for invited speakers.

AB50.3. 1

AB 50p.6

(&)

THE ART AND SCIENCE OF PROGRAMMING

IFIP’s community of experts tackle key problem areas

(This report has been written for IFIP by Kenneth Owen,
former Technology Editor of The Times, London)

Programming arouses strong feelings — of incom-
prehensibility, alas, to many people outside computing;
of partisan vehemence by factions of experts on the
inside. In the world of computers, no subject is more
basic, none so all-pervasive in its impact (for good
or ill) on the performance of computing systems.

For a subject as wide-ranging and ubiquitous as this,
who would dare to attempt to set up a framework
within which experts would comprehensively monitor
and advance the state of this peculiar art? The
answer to that question is IFIP, the International
Federation for Information Procmmg, and in parti-

cular the Federation’s Technical Committee 2 (TC 2).

IFIP’s members are national professional and techni-
cal institutions. Its aims are to promote information
science and technology and to stimulate research,
application and international co-operation in this
field. TC 2 is one of nine technical committees
within IFIP, each acting as a forum for discussion
in a particular technical area. Chairman of TC 2 is
Professor Manfred Paul of the Institut fiir Informatik
at the Technical University of Munich.

Each IFIP technical committee, made up of national
representatives, devolves its technical work to a
number of working groups, which invite appropriate
experts to participate regardless of nationality. Each
working group covers a particular specialization.

The work of TC 2 has evolved in response to develop-
ments in the science of g over the years,
Professor Paul points out. In the late 1950s, he
recalls, programming really was the struggle to get
away from assembler languages and to create higher-
level languages such as FORTRAN and ALGOL.

In particular, the preliminary on ALGOL which
appeared in 1958 acted as a focus of intense interest
for computer scientists. IFIP itself was created under
the auspices of UNESCO in 1960, with two initial
technical committees, TC 1 (Terminology) and TC 2
(Programming). For TC 2, the title « programming »

at that time meant high-level programming language
design, followed closely by the start of work on the
automatic translation of such languages. But,. even
then, it was clear that there was more to programming
than simply programming languages.

Working Group 2.1 (ALGOL) was formed in 1962.
It began its work by first discussing how to implement
a language such as ALGOL. As a result, 2.1 was
trying to revise and improve the 1960’ ALGOL
Report, while, at the same time, it was investigating
the problems of translating such a languagc

« During that time it became clear that one had to
study not only the programming language itself,
but also the means by which such languages were
defined », Professor Paul says. « And, for that defi-
nition also, a formal language is best. » This led to
TC 2's first working conference, held in Baden,
Austria in 1964, at which languages for defining
programaming concepts were discussed.

The following year a second working group, WG 2.2
(Formal description of programming conccpu) was
set up. « Not only did that widen the view of pro-
blems in computing », Professor Paul notes, « but it
established a formal way for those topics to be
discussed. »

A decisive turning point came in 1966 when WG 2.1
(having revised the ALGOL 60 Report) started to
think about further concepts which would enable a
high-level language to deal more- easily with more
general, non-numerical algorithms, such as those for
text handling, for instance. More general data struc-
tures than those of ALGOL 60 were sought, and to
this end a new way of defining programming languages
was presented.

The working group commissioned a sub-group to
define a successor to ALGOL 60 which would in-
corporate the new data structures and use a more
rigid means of defining the language. The result was
ALGOL 68, an undoubted intellectual achievement

AB 50p.7

but one which suffered from the extreme rigidity

with which the language was defined, and from a
number of programming concepts which were not
generally accepted.

In 1969 the ALGOL 68 controversy led to the hiving-
off from WG 2.1 of a new working group, 2.3,
concerned with programming methodologies. This
reflected the expansion at that time of the overall
concept of programming. It had become clear that
programming was more than just looking for the
concepts in the language and for definition methods.
It was also about the methodologies and tools needed
to transform ideas for algorithms into working
programs.
Up to this time the main interest in programming had
concerned programs for user applications. But in
the early 1970s a new interest emerged in the design
of operating systems and systems software generally.
A working conference on machine-oriented high-level
was followed by the formation in 1973 of
Working Group 2.4, concerned with system imple-
mentation languages. Thus the understanding of pro-
gramming was growing progressively as different
facets of the subject came under scrutiny.

The next development within TC 2 was concerned
not with a new aspect of programming but with a very
familiar one — that of numerical software. In one
sense the numerical analysts were really the people
who started it all, anyway : they were the first to use
big computers and to write complex algorithms. In
1974 their interests were formally recognised with
the setting up of WG 2.5 (numerical software).

Data bases had become very much a hot topic by
this time, and the study of data base languages and
technologies was taken up by WG 2.6, the second
working group to be formed in 1974. Command
languages which give an interface to the system had
also emerged as a potentially difficult area, needing
further study, and this was reflected in the formation
in 1975 of Working Group 2.7 (operaung system
interfaces).

TODAY’S TOPICS The pressing issues in the field
of programming today, Professor Paul says, are
centred on concurrent progmmmmg, distributed sys-
tems, and expert systems in the widest sense. But,
within these areas, the questions are the same as
before : how to go about solving problems with the
help of the systems that you have. The systems are
now more sophisticated, they may be distributed via
local area networks, they are likely to contain huge
data bases.

< You have to know how to deal with huge amounts
of data, for example, 10% or 107 different objects
that have to be grouped according to certain criteria.
That's what data bases do and, if you have the right
control and method to use the system purposefully
andthrouglanmactxvemm-machme com-
munication, it may develop into an expert system. »

And,theTCZchamanadds,thﬂeuthceollecmn
of problems which are being addressed in the Japanese
fifth-generation computer programme. Professor Paul

'doetnmbelwvethatantheamsandgoa]softhe

Japanest programme will be reached within the
planned decade. He doubts whether some will ever
be reached.

« But I'm sure that some of the interesting issues of

mtzlhgcnce for example, artificial vision,
pattern recognition in the area of audible trans-
missions, or robotics — all come together to form a
very complex bunch of questions and problems
which have to do with programming. »

is an engineering discipline, Professor
Paul comments. While the classical engineering fields
deal with matter, the software engineer’s « matter »
consists of information.

Similarly, with programming, a new dimension is
added to engineering. « Programming is partly a
fundamental science, and partly it is an engineering
discipline. » And the work of TC 2, the chairman
insists, covers both theory and practice.

The committee has rejected suggestions that it should
adopt the phrase « software engineering » in its
formal terms of reference or in those of one or other
of its working groups. This is not because the subject
|s not xmportant — it is regarded as very important

the definition of the
comnuttees scope (as quowd later in this article) is
seen as already embracing the subject.

«So far », says Professor Paul, «I think all the
actual problems that have come up in programming
have been incorporated into the work of our groups,
although sometimes the shift of interest to tackle new
problems may take perhaps two years to achieve.

« The framework has proved remarkably good, and
also flexible in that we have encouraged young
people with new ideas to participate. We believe our
structure covers the field at present. »

GROUP ACTIVITIES Against this background
of the historical development of programming and
today’s topics of interest, TC 2’s working groups are
pursuing active programmes in their respective areas
— and in their various ways. To hold working confer-
ences of experts and publish the proceedings is one
well-established practice within IFIP, but no standard
working style is laid down for the working groups.
In the TC 2 groups in particular, the style reflects
the membership.

Starting point for the TC 2 work is the formal
definition of the committee’s scope. This says com-
prehensively that the committee’s work includes :

— general comsiderations concerning programming
inciples and techniques, such as concept develop-
ment, classification and description;

— the investigation and specification of particular
programming languages; .
— the investigation and specification of programming

systems; and
— the identification, investigation and specification
of programming techniques and their applications.

Over the past two years the group has explored some
of the concepts involved in programming by transfor-
mation - that is, the search for methods to transform
a formal specification into a runnable program. They
did not believe this could be done completely auto-
matically, but interactive methods might help in a
step-by-step sequence.

Now the group has narrowed down from the search
for general concepts to a scrutiny of i
languages in the context of transformational pro-
gramming. One example is the language CIP-L
(CIP stands for Computer aided, Intuition guided

ing) developed by scientists at Munich
Technical University.

Working Group 2.2 (formal description of program-
ming concepts) describes its scope as « to explicate
programming concepts through the development,
examination and comparison of various formal models
of these concepts.» Last year it held its second
working conference on the formal description of pro-
gramming concepts in Garmisch, F.R.G. Just as the
first working conference on the same topic in St.
Andrews, Canada, it was very well received.

Working Group 2.3, set up in 1969 by a minority of
2.1 members who had opposed the publication of
ALGOL 68 (« feeling that programmers needed tools
other than bigger and better programming languages »,
to quote Mr. M. Woodger of the UK, chairman of
2.3), has a record of distinguished contributions to
computer science by its members — and of a light,
informal working style.

Its subject is programming methodology, and its
defined aim could hardly be more all-encompassing —
« The work of the group is directed towards increasing
programmers’ ability to compose programs. > Eight
topics are listed to illustrate the scope of the group’s
work, but again the net is cast deliberately wide.

The group sets out to provide an international forum
for the discussion of programming methodology. In-
formal discussion meetings rather than formal confer-
ences are the rule, with the result of this interaction
appearing in the normal scientific literature rather
than in special published proceedings.

Machine-oriented higher-level languages, otherwise
known as system implementation languages, are the
concern of WG 2.4, In general these are characterized
by:

AB 50p.8

- duﬁr)&nznded application area (software develop-
ment);

— their machine orientation (they may be used as
assembler H

replacements); N
- their concern with the efficiency of the object
program; and
— their use of coatrol features (but not necessarily
data or operation featurcs) of general purpose
programming languages.

Members of the group have been much concerned
with the Ada language in recent years (about half
the members were involved in Ada program develop-
ment). Now the emphasis is changing towards pro-
gramming environments, concurrent systems, machine
architecture and compiler technology, with the goal
of deriving requirements for future system program-
ming languages.

As a group, the members aim to explore the tech-
niques involved in their kind of languages, rather
than to design a speclfx:languageofthelrawn.ln
March 1983 at Dresden, G.D.R., n;omt 2.1/2.4 open
conference was held on programming languages and
systems design. WG 2.4 members are now preparing
for a 1984 working conference on « system program-
ming languages — experiences and assessment », which
will be held in Canterbury, England.

Working Group 2.5 aims to improve the quality of
numerical computation by promoting the development
and availability of sound numerical software. Most
of its activities take the form of projects, in which
one or more members pursue a chosen subject in
collaboration with other scientists in the field.

Subject areas which have received the attention of
2.5 include the transportability of numerical software,
languages for numerical software, programming en-
vironment for the development of numerical software,
hardware requirements for numerical software,
evaluation of numerical software, and numerical
software for special areas.

Software for solving partial differential equations was
the subject of a working conference in Sweden in
August 1983. The group is working towards a closer
collaboration between the designers of numerical
software and of statistical software.

Although the general-purpose scientific languages
form the basis of general-purpose scientific compu-
tation, there is a need for more specialized languages
and computing environments (e.g. for computer aided
design). These can free the user from the necessity to
learn a sophisticated programming language, and can
address the problem area directly using its own voca-
bulary. A forthcoming working conference will explore
the implications.

Working Group 2.6 (data bases), whose scope is
« to investigate, evaluate and develop data base lan-
guages and technologies », has been relatively inactive
in recent years. Under a new chairman it is now
planning to launch a new programme, starting with
a working conference on conceptual schema design
methodology.

2.7 tomvesnganthemture
and concepts of the i uerfm of operating systems.
thmthubroadscopethegonpisnowwmhngon

modelling both existing - and future command and
response languages, nsedboth)ocnllyandmnetworb

tried to define command and response in terms of the |

E

languages, and without considering the under-
lying concepts. As a result, the user interfaces to
computer systems are difficult for non-experts to
undcrstnnd.’me27pm)ectxbouldpmvﬂea:mph
and better organized framework within which the
user interface can be tailored to different types of

FUTURE DIRECTIONS One arca which is
creasing interest to TC 2, as mentioned by the

2
B

is -that of -distributed data processing.-

chairman,
Mr. T.B. Steel Jr. oftthSA,afotmerTC2chmr—

The link with the ISO has a double bencfit : it keeps
TC 2 members aware of the progress of the OSI
work; mdnenablesthemﬁomﬂnmmeofthn
worklneeelury It also a base from which
toaddressthewnderaspecuofdnm’butedsystcms

Ontopotthcnetwotkmdf \huemptoblemsol
integrating with OSI such things' as' genninely distri-
buted data

To achieve fully integrated distributed systems,
Mr. Steel suggests, -will take at least ten years’ work.
ForTCZmnddmsthuwbpctmamoteformal
way — possibly by holding a working conference
which might lead to the formation of a new warking
group — would be a logical future development.

Another development could be to bring in to TC 2's
activities more experts from the artificial intelligence
community, smewhatﬂwyaredomguvetymuch
« programming » mdﬁxenﬁeldnadvmmgr%
The subject is clearly of interest to a number of ’s
existing working groups (such as 2.1, 2.3 and26),
b\ltashupafomstotheeommxttee’smmutmthm
subject would be another logical possibility for the
future.

There is no doubt that, over many ycars, members
of TC 2 and ‘its working groups have significantly
influenced the development of computing science, both
collectively and as individuals. The committee’s mem-
bership embraces both traditionalists, active in refining
familiar techniques; and radicals, keen to investigate
new concepts. Perhaps one of their future directions
might even lead to the foolproof and almost fully
reliable program. .

Published by the IFIP Secretariat, 3 rue du Marché, CH-1204 GENEVA, Switzeriand
Qctober 1963

For further information, please your N

1C Society or the IFIP Secretariat.

{ 4

languages, graphics.

bt <R 83N T N3 5 PSR ST B

—

AB 50p.10

AB50.4.1 An _Executable Prolog Semantics.

Lloyd Allison
Department- of Computer Science
University of -Western Australia

Nedlands 6009

25/5/83

Abstract.

A Denctational Semantics of the logic programming language Prolog is
expressed in A!gol-68. The result is a formal definition that is also
executable. It is presented as an example of high-order programming’ in
Algol-68; the eventual aim is to use this to compare differing brands and
implementations of Prolog formally and experimentally.

Introduction.

Pagan [1] suggested the use of Algol-68 as a metalanguage to write
denotational definitions in, but he recogmsed that to translate the highly
curried funictions in a 1-1 manner would require partial parameterisation(2].
For example, the domain of functions A->B->C or proc{A)proc(B}C cannot be
used in Algol-68 if the proc result depends on loca! objects as it usually
does. In [3] however the definitions were uncurried, to 'AxB->C or
proc(A,B)C, and then expressed in Pascal, as it happens, to defme a very
small language with jumps.

Here the technique is applied to a definition of Prolojﬁ]. The notlons
of Standard Denotational Semantics are used. The advantage of 'using a
uniform flavour or style of semantics is the -ability “to discuss very
different ‘languages (for example Pascal and Lisp) "within a single
framework'{5). The eventual aim here is firstly to bring Prolog within this
framework. Then, Prolog is recognised as only a first approximation to the
goal of programming in logic. Its declarative semantics are to be
understood as first-order logic but Prolog implementations invariably
include non-logical features for various reasons, notably for efficiency but

AB 50p.11

An Executable Prolog Semantics

also to make some programs work at all. These features can only be
understood in terms of Prolog’s procedural semantics which specify how a
program is executed; their use is also called specifying the "control"
component of a program. One might devise elegant methods for the
programmer to specify the control information[6, 7] or better for this to be
generated automatically{7. The second aim is to define these procedural
semantics in the denotational style so as to compare various contro!l
mechanisms. It is hoped that the formal theory of Denotational Semantics
will illuminate the essential features of the mechanisms. By coding the
semantics in Algol-68 it is possible to run the definitions as interpreters
and to experiment with them,

Using Algol-68 as a metalanguage for Denotational Semantics exploits
the fact that Algol-68 minus assignment is a useful functional language.
The technique is perhaps less "clean" then using a true Semantic Compiler-
Compiler(8,9,10] but it needs no software other than a compiler.

The semantics given here is for a very basic Prolog, strictly left to
right depth-first search and cut is not defined. Jones and Mycroft{11] give a
denotational definition at about this level of detail which does include cut.
Lassez and Maher[12] give a denotational definition much closer to the
declarative interpretation of Prolog.

Prolog.

A very simple example is given here to illustrate some of Proleg. A
clause is a statement of fact such as "male(fred)." or

"brother(X, Y):-male(X),parents(X,A,B),parents(Y,A,B).".

This demonstrates atoms such as "fred", variables such as "X" and compound
terms such as "breTher(X,Y)". The first clause can be thought of as a basic
fact in that it is true without further proof. The second is a rule and can
be read, X is a brother of Y if(:-) X is male and the parents of X are A
and B and the parents of Y are A and B. Note, the implicit association of
these clauses with real family relationships is an interpretation supplied by
the programmer and not by Prolog.

A question has.the form "?male(fred).” which, given the above clauses
would result in a "yes" response. "?male(bill)." would give "no" as things
stand. A question may also include variables as in "?male(X)." which
would result in "X=fred yes" or some similar indication that the question
can be solved by binding X to fred. Precise details vary between
implementations but there is some way of running through all possible
solutions to a question.

Informally, Prolog is implemented by some form of backtracking,
usually left to right depth-first search on the terms in the current goal
clause. At the heart of the search is a pattern-matching algorithm called
unification which attempts to match the current term with the head or left
hand side of a.clause from the set. This may involve binding variables in
the term and/or the head, and is done in "the most general” way possible.

R

AB 50p.12

An Executable Pralog Semantics

Domains.

The domain of function A->B will be coded as proc(A)B. The high-
order domain A->B->C or A->B->C) must be uncurried to AxB->C and
coded proc(A,B)YC. The disjoint sum A+B is coded union{A,B) and the. product
AxB becomes struct(A,B).

An atom can be an integer or a string in "fred". Lists of values
can appear in compound terms. A Prolog program will be represented by a
tree-like data-structure value:
mode node=union(int,string,compound, list,location);
mode compound=struct(string op,list args); mode list=struct(value head,tail);
mode value=ref node. For the case of a clause there will be a compound
with op ™-" and for a question "?".)

Prolog has veriables but these should be understood as particular, as
yet unspecified, values. Once a variable is bound its value will not change,
except that it may contain other as yet unbound variables. The environment
in a Prolog program maps variable identifiers onto values
mode env=proc(var id)value. A variable identifier may be reused in several
procedures and a procedure may be recursive so to avoid name clashes the
approach taken here is to map unbound variables to locations which will
hopefully later attain a value in the store, mode store=proc(location)value.
Some implementations use systematic renaming of variables which is
equivalent to the use of locations. .

Top-level semantics.

A program is processed one clause or question at a time sequentially.
Each clause can be thought of as (part of) a declaration of a procedure,
such as procedure "brother" above. This sequential processing is specified by

exec: prog->pnv->dcont->answer
pnv=term->prok
dcont=pnv->answer
answer={{yes}+value)**

if progl and prog2 are each a clause or question then

exec "progl.prog2." p dc
= exec "progl." p newdc
where newdc=(p‘)answer:
exec "prog2." p’ dc
exec "g-r® p dc = dd "g-r." p dc
_exec "q" p dc = << pp "7q." p emptyenv yes emptystore,
dc p
>> .
A declaration continuation dcont is something to execute after the given
clause or guestion. 1o execute progl prog2 in succession, execute progl in
the given procedure environment p and with a new continuation which will
execute prog2. progl may update p to p’; execute prog2 with p° and

AB 50p.13

An Executable Prolog Semantics

eventual continuation dc. Clauses are defined by dd and questions by pp.-.
In Algo]-68 exec must be uncurried:. _) o, A

proc exec=(velue. prog,pnv p,dcont dc)annwer
cese prog in
(list l)’exec(haad of 1, p,
. . (pnv p2answer:
, exec(tail of I, p2, dc)
1
(compound c):

(if op of ¢ = ":-" then
dd(args of c, p, de)
else # must be question#
cons(pplargs of c,
p,empty cnv,yes,empty store),

de(p)
out undefined A .
esac . . ISR
where

mode deont:proe(pnv)uu\nr-
proc undefined=answer:
(print("undefined prog"); goto stop; skip);
env empty env=(string id)value: unbound;
‘store empty store=(location l)value: unset
and
informally, yes gives answer "yes" '
pp processes questions and dd declarations or .clauses. .

C lauses.
Clauses are defined by dd,

dd:c lause->pnv->dcont->answer
dd "q-r." p dc_ = dc newp
where newp=(term t)prok:
(pt 1l
unify t q emptyenv callr

where callr=pp r newp

To evaluaste "g:-r." given procedure environment p and declaration
continuation dc, epply dc ‘to en updated p which will also attempt to unify
terms t with q and, should that be successful, ask "?r". Note emptyenv
occurs because varigble identifiers are local to a clause, and |} defines the
order of search. amongst the rules, usually sequential. It ig here that the
branchmg search is defmed; both.the old p. and .the hew. umf:catlon may

AB 50p.14,

An Executable Prolog Semantics

produce answers.

A term such as brother(,) denotes- a prok=gont- >stdre;>er\swer. cont s
defined below. pnv=term->prok =term- >cont >store->answer or uncurried
modc pnv-proc(term,cmt,sture)amwer. #

. Note that a fact "q." js tgken to be a rule "q:-.“ wnth an empty nght
hand side or nothing to prove.

ln Algol-68 we have,

proc dd:(va!ue dec,pnv p,dcontz dc)amwer S . -
(pnv pewp=(value t,cont cuecess,ptou o)amwer' : -
cons(p(t,success,s), .-
(pcont cal lr=(env ez,store sZ)emwer-
pp(tail of dec, newp, e2,
(env e3,store s3)answer:.
3 success(s3);

3 . *

)%
unify(t,head of dec, emptyenv, callr, s)

de(new;;)
)

Questions.

We need to define the backtracking search process of a typical Prolog
implementation. A particular . term “?male(hilary)." may succeed or fail
depending on whether it is a fact or not. If this is a subgoal of a bigger
goal, success means continue with the attempted proof, failure means give
up (backtrack). In fact a goal "?male(X)." might succeed in several ways so
in general we have a branching process.

A (procedure) continuation is something further to try in case of
success pcont=env->store->answer or mode pcont=proc(env,store)answer, it
uses the env and store, which are growmg durlng the forward search, to
produce an answer, '

When a subgoal has been proved, we continue with the main proof but
variables are local to the subproof so such a continuation is defined as
cont=store->answer or mode cont=proc(store)answer. The environment created
in the subproof is discarded on return, but sny necessary values are passed
on in the store. A clause denotes a prok=cont->store->answer. The cont is
to be evaluated in success. A question might be a single term ""q" or a
list "?q,r,s. < are q'and r and s true?

pp:quest->pnv->env->pcmt->store~>answer
pp"""pepcs_:pces # the nil rhs#
PP "?q,r." p & pc’s oo
‘"'=pp""q. p e “dorest s o
where dorest-(env e’)store- >answer:
P "’1‘- P e .pe ‘

AB 50p.15

An Executable Prolog Semantics

pp "qg"pepcs
= p map(gnewe,news) pc(newe) news

To evaluate an empty goal just evaluate the given continuation. To prove
a list of terms, prove the head of the list with a continuation which seeks
to prove the rest of the list; this defines the left to right search within a
clause. If there is a single term, it may contain variables. The updated
environment and store, newe and news, contain bindings of any such
variables to free locations so as to avoid name clashes; "map(g,newe,news)"
is q with the variables so replaced. In any case, test the set of procedures
p to see if q is provable. Note that in -evaluating "?q,r.", any bindings in
the unification of q are passed, in e’, to the evaluation of “7?r.".

In the Algol-68 we have

proc pp=(value quest,pnv p,env e,
pcont’ pc,store s)answer:
if quest is nil then
pcle,s)
else
case quest in
(list 1): pp(head of 1,
Py €
(env e2, store s2)answer:
pp(tail of 1,p,e2,pc,s2),
s

)
(compound c):(env newe= not v.interesting;
store news= ditto H
p(map(c,newe,news),
(store s2)answer:
pe(newe,s2),
news
))
out undefined
esac

fi

Note that these semantics do ndtv allow for system procedures such as
assert which may update the procedure environment p.

Unification.

Unification is responsible for the matching of terms to the heads of
clauses. If no variables are involved this is a simple (tree) equality test;
an atom matches itself and structures match if their components match.

By this stage, the term contains no variables - any still not
determined are replaced by unique locations. An unset focation unifies with
a value by being bound to it. A location unifies with a variable by the
variable becoming bound to the location, or sharing with it. A variable
may appear more than once in a term as in d(X,X,D.". This may result in

AB 50p.16
An Executable Prolog Semantics

an unset location unifying with an unset location; in this case they are both
bound to a new unset location if-they differ. = ... -~ Co .

Unification usually proceeds left to right across a term.” As it
progresses the environment and the store hmay be. updated. At any time
matching may fail and backtracking occur. Unification can be ‘defined in
the same way as the rest of the execution of Prolog. The definition is long
because of the number of cases involving locations and variables in the
term and/or the head of the clause and whether: they ‘are first occurrences
or not, Two of the controlling cases oniy are given: . - . - :

unify: (term x clause)->env->pcont->store->answer

1) unify "q(argsl)" "r(args2)" e pc s
= if g=r then unify "argsl™ "args2" e pc s

2) unify "“al,a2" "bl,b2" e pc s
= unify "al” "bl" e newpc ¢
where newpc=(env e”)store->answer:
unify "a2" "b2" e’ pc
In Algol-68 this becomes -
proc unify=(value term,clause,env e,pcont pc,
store s)answer:

1) if op of term = op of head of clause then
unify(args of term,args of head of clause,
e, pc, 8)

2) unify(head of term, headad of clause, e,
(env e2,store s2)answer:
unify(tail of term,tail of clause,e2,pc,s2)
) .

Output.

Prolog provides many standard system predicates or procedures. One
of these is write. ’

7male(X), write(X,is,male).
might result in
fred is male yes

Such system procedures can be pravided in an initial

AB 50p.17

An Executsble Prolog Semantics

pnv start pnvz(value t,cont success,store s)answer:
if t is ni] then
_success(s)
elif op of t = "write" then
cons(map(args of t,nilenv,s), success(s))

The argument of write should contain no variable identifiers but:it might
contain locations which should be mapped to values in the store.

Conclusion.

Using Algol-68 to code Denotational Semantics gives a formal
definition that is mechanically checked and is - executable. Such an
interpreter is a reference implementation. and is very useful for
experimentation. The semantics presented here has not been compiled or
run as is, but an Algol-689[13) version has been used to run simple Prolog
programs. This Algol-685 does have heap but lack of union, multiples in
structs and restrictions on string make this version less elegant.. A shortcut
of using the standard output file to take the answers produced was also
used. Unify is 100 lines long; pp, ee and exec together take 75 lines. The
syntax of Prolog was coded into a recursive-descent parser to build the tree
for the semantics to walk.

References.
(il F.G.Pagan "Algol-68 as a metalanguage for Denotational
Semantics."
Computer Journal V22 Nol (Feb 1979) p63-66

{2]. C.H.Lindsey "Partial Parameterisation"
Algol Bulletion No 37 p24-26 (1974)

[3}. L.Allison "Programming Denotational Semantics"”
Computer Journal Vol 4 1983 plé64.

[4) W.F.Clocksin, C.S.Mellish Programming in Prolog
Springer Verlag 1981

[51 M.J.C.Gardon The Denotational Definition of
Programming Languages.
Springer verlag 1979

[6]l K.L.Clark, F.McCabe "The control facilities of
IC-Prolog."
in Expert Systems in the Micro-Electronic Age
D.Michie (ed) Edinbugh U.P. 1979

An Executable Prolog Semantics
[7. L.Nsish "MU-Prplog 3.0 reference manual”
Melbourne University May 1983

[8l. L.Paulson "A Semantics Directed Compiler Generator"
9th Annual Symposium on Prmclples of Programmlng

. Languages Jan 1982 p224-233 .

[91. M.R.Rmkovsky "Denotational -Semantics as a .- R
Specification of Code generators" - -
Proc 1982 Sigplan Conference on Compller Constructmn
June 1982 p230-244

[10). R.Sethi "Control Fiow aspects of Semanucs Dlrected

. Compiting.” - R
Proc” 1982 Sigplan Conference on Compiler Construction
June 1982 p245-260

[ll]. N.D.Jones, A.M.Mycroft "Stepwise Development of
- Operational and Denotanonal Semanucs for Prolog.”
Draft version April 83
Copenhagen University/Edinburgh University

{12). J-L.Lassez, M.1.Msher "Closure and Fairness in the
; Sementics of Programming Logic."
University of Melbourne 1983 :

[131 C.H.Lindsey "Algol-68S system" -
University of Manchester 1982

AB 50p.18

AB 50p.19
AB50.4.2 A Librar hani for t DC Algol 68 C iler
by David A.J. Outteridge
(Martin Marietta Corporation, Denver, Colorado, U.S.A.)
Summary.

Algol 68 has no machine-independent construct to allow the use of library
facilities. However in the COC implementation use is made of pragmats to
offer the user the opportunity both to access separately compiled code and
to make additions to the standard prelude. This article describes a method
- implemented and in use for over three years - whereby these available
facilities are used to create a system that enables a user to create, use
and maintain extensive modular libraries in a simple way. An Algol-like
construct that could be considered machine-independent is used in programme
source code to access required modules from the desired library.

Introduction.

A library of operators appears to be a sucession of small pieces of code;
and one would expect to draw on only a few operators in a particular pro-
gramme. CDC describe their Algol 68 compiler prelude-addition facility as
library addition; hence one produces a "library-prelude”". These facts led
the author, at that time engaged in modeliling a physical engineering
problem and blissfully unaware of what was happening in the computer, to
create a large, mostly dormant, library-prelude. So large a prelude that
one day a particular programme filled up all available mémory on the Cyber
in use at the time. The relevant characteristic is that all the additional
(user) code is loaded at assembiy-time rather than the small percentage
that is actually used; all the code is compiled into one module.

After a short period of dicussion, during which the learning rate was posi-
tively astronomical, the neophyte accepted with gratitude the offer from
the Data Systems Division of the company to provide a more suitable system.
This system has grown significantly, gradually becoming more sophisticated
in capability so that now it provides a library use and manipulation
mechanism that is flexible and yet retains all the checking of the CDC
compiler.

Advantages of the system include the ability to write number-crunching
routines in optimised Fortran or Compass (assembly code) in a way that is
user-transparent and that may be done in a selective manner so that run-
time checking may be carried out until there is no further point. As an
example: an Algol matrix multiplication routine can do bound checking and
matching and then call optimised Fortran Code to do the work. Perhaps it
is necessary to bring this approach into perspective by pointing out that
it can reduce run time by a factor of four; CDC optimised Fortran is fast.

The library system is believed to be totally secure at compile-time (as
opposed to a do-it-yourself access to separately compiled code) as will

be explained. However at the time of writing this paper there is no check
made at assembly time that the module being loaded is indeed the one

AB 50p.20

that was in the library at compile time (i.e. the one intended to be used).
It is hoped to introduce a "date-stamping" system similar to that used in
Algol 68R - but presumably then there will be the frequent necessity to re-
compile mentioned in AB 48.4.2; however it is thought that this is
preferable to disastrous results, and an up-date compilation of one module
is possible which eases the problem somewhat.

Despite the objections that may be made about the library system when
viewed from an academic viewpoint - it is messy, involving a pre-processer
and a significant amount of operating system control - perhaps its greatest
virtue is that it is here and it works. The library system enables
practical engineering analysis of significant problems in a way that would
not be possible without it. ’

CDC Syntax.

To create a library-prelude it is necessary both to submit source code to
the compiler in special format and to signal that one wishes to compile in
prelude addition mode. The latter is effected simply by including an "N"
in the compiler parameter list. The special format for the addition source
code is as follows:

MODULE: (‘C’ PRELUDE SOURCE CODE 'C';
"PR’ PROG 'PR’
‘C’ POSTLUDE SOURCE CODE ‘C’')

MODULE is used as the module name for later identification, when the
library is used the PROGramme will be embedded in the pre/postlude as
indicated.

The desirability of adding to the postiude is not immediately apparent. An
example is: suppose a library were created for a series of programmes that
call Fortran sub-routines that involve transput. Since no Fortran main
programme exists it would be necessary to open and close the required
system files within the Algol main programme. Suppose the procedures that
do this opening and closing are "enable fortran transput", “required
fortran tapes ?'C’ list 'C")" and "disable fortran transput“. In this case
it might be appropriate to make the first procedure call in the prelude,
the second in each particular programme with a set of file-name parameters,
?ndtthetthird in the postiude. Not closing the files might well result in
ost data.

Separately compiled code is treated as the definition of the unit of a
routine. The whole routine then may be ascribed to an operator or
procedure identifier as in the examples below; a programme not using
separately compiled code is given first for comparison.

A SIMPLE PROGRAMME:

30 s ke ke sk e e ke ko ok KoK oK ok

LEADING LABELS ARE OPTIONAL, BUT I1F PRESENT THE FIRST SEVEN NON-SPACE
CHARACTERS ARE USED BY THE COMPILER TO NAME THE MODULE; ELSE: A68PROG #

"BEGIN’

"REAL’ X; READ (X);

WRITE ({("X IS: ", FIXED (X, -8, 2), NEWLINE))
"END’ # OF A SIMPLE PROGRAMME #

AB 50p.21

A SEPARATELY COMPILED ROUTINE:

FErreR Rk RERERE =¥

' BEGIN’
‘PROC’ DOUBLE = ('REAL’ Y) ‘REAL’: ’PR’ XDEF TWICE 'PR’

TWICE IS THE ENTRY POINT OF MODULE ASEPARA

' BEGIN' # OF UNIT #
2 >y # YIELD #
' END’ # OF UNIT #

PR’ FEDX ‘PR’; # END OF PROCEDURE DEFINITION #

"SKIP' # AN ALGOL PROGRAMME MAY NOT END WITH A DECLARATION #
"END’ # OF THE SEPARATELY COMPILED CODE #

CALLING PROGRAMME:

0 ook o o o o ok ok ok ok ok

' BEGIN'
"REAL' X; READ (X);

‘PROC’ DOUBLE = ('REAL’ Y) ‘REAL’: 'PR’ XREF TWICE ‘PR’’SKIP';
XREF THIS TIME

WRITE ({"TWICE X IS: ", FIXED (DOUBLE (X), -8, 2), NEWLINE))
"END’ # OF THE CALLING PROGRAMME #

The separately compiled code may be written in another language,
usually Fortran or Compass:

FUNCTION FOURX (X)
FOURX = 4 = X
RETURN

END

Called by: 'PROC’ QUADRUPLE = (‘REF’ ‘REAL’ X) ‘REAL’:
"PR’ XREF AG68FTN, FOURX ‘PR’ ’SKIP';

Note that the Fortran routine requires the address of X.

Before continuing with the description of how these two constructs are
used in the library system structure it is pointed out that with the
separate compilation mechanism described, responsibility for correctly
matching the interfaces of the calling and called modules lies entirely
with the code writer. Not only is no check carried out at load time,
but neither is it possible to check at compile time - the modules are
compiled separately after all. This is unfortunate for it means that

Jjust at the time when it is likely that mis-match errors will occur they

are not checked for.

Also note that the library system about to be described does not preclude

a user from using the pragmat system shown above; it is supplementary.

AB 50p.22

Library Structure.
The fundamental ideas behind the library system are:

i) to extend the standard prelude to the minimum degree possibie
consistant with achieving the required effect, this minimises the
amount of space used at run-time. (However the user has full control
over the size of prelude: he can reject this objectivel.

ii) to provide a (large) number of modules which may be accessed via
the separate compilation pragmat as required. By calling only those
modules required a user may minimise the amount of space used at
run-time.

iii) to provide a simple mechanism to automate the accessing process
for the user to avoid as many errors as possible.

Using a Library, User Source Code.

A user has an index of available modules in a given library, together
with the complete prelude, on the "headers” file; see appendix A. A
means of readily accessing this library information is available and
normally the user would have a hard-copy for reference. Having decided
which modules he needs, a user introduces them where he chooses in his
particular programme via the "include" statement:

INCL’ MODULE NAMES SEPARATED BY COMMAS ' LCNI’

This statement may be put anywhere it is legal to declare identifiers,
and duplicate calls to modules are ignored so that only one declaration
of a given module is made (this is important since library modules may
call other library modules). From the user’s point of view the effect is
the declaration - serial, not co-lateral - of the required procedures and
operators in place of the include statement. Multiple use of the include
statement results in multiple sets of declarations, and duplication in this
case is dealt with by the scope rules of the language. Naturally the
correct prelude must be used when compiling particular programme source
code; this is simply a matter of specifying the module name when calling
the compiler, the default being the standard prelude.

Thus, three things are required of a user who wishes to use modules on
a library:

i) inclusion of a 1ist of the required modules in particular programme
source code.
ii) specification of the required library at compile time via operating
system commands.
iii) ensuring the library availability at both compile and load time.

Appendix B contains a sample programme and the resultant listing after pre-
processing and submission to the compiler.

Mechanism of the Pre-Processer.

Joint examination of appendices A and B will unveil any mystery about the
code conversion the pre-processer effects. Consider for example the
declaration of the operator + on lines 4 and 5 of the listing in appendix
B. The pre-processer simply has inserted the operator declarative and

AB 50p.23

formal parameter parts of the module headers entry from appenaix A into the
source code, and then stuffed the module name into the appropriate pragmat

that announces the module as separately compiled. The include statement as
such is removed.

The reader should not miss the bonus that this linkage provides: by
introducing source code from the library into the particular programme
code the pre-processer relieves the particular programme writer of the
responsibility of checking the code interface. The compiler is able to
do full checking to ensure correct usage; this is considered to be a
significant improvement over a method relying on human actions.

Library source code format.

Libraries are required to have special layout, partly to enable the
production of the library headers and partly because a few restrictions
make the pre-processer a lot simpler. Appendix C contains part of the
vector library used in the example; however further detail of the special
layout and special rules for library writers will not be spelt out here.

Library Manipulation.

The encouragement of source code generality and subsequeni public avail-
ability of useful routines is hardly a new idea; however a side-benefit of
the library system described is a furthering of this end.

A collection of operating system command procedures has been written with
the objective of assisting use of Algol 68 on the CDC Cyber; and, from a
practical point of view, it is pointless not to use the library generation
routines. The resultant common usage results in common library design;
leading in turn both to a common headers format which aids human
comprehension, and the capability of manipulating (operating on) libraries
with other operating system procedures. Thus, in addition to the vector
library, there exist other basic libraries such as a graphics library,

a matrix library and a transput library. And these basic libraries may be
combined as required using the appropriate operating system routine to
provide the library most suitable for the job in hand. The only
restrictions are those concerning compatibility of the constituent
libraries; for example since the prelude/postlude source codes are
assembled into one source code deck and re-compiled it is necessary that
there be no duplicate declarations.

Once assembled this tailor-made library is machine-indistinguishable from
any other library and the manipulation process may continue. One useful
library operation enables the extension of an existing library with further
source code. Hence there exists a library used for investigation of
satellites that is based on the vector library and one other, but which
contains an orbit-specific prelude/postiude and many extra modules.

It is re-iterated that the advantages of this system of library control
and manipulation are ease-of-use and complete compiler checking of
interfaces at particular programme compilation time.

AB 50p.24

Qther uses.

i1t appears that by using a number of system-depgndent pre-processers a
fair amount of code portability could be maintained, although the human
management of such a scheme would not be insignificant. It appears that
the only requirements of the implementation are some - codable - means
of accessing external modules and the ability to extend the prelude.

Acknow ledgements.

Development of the CDC Library Mechanism described has been brought about
with the facilities provided by the Martin Marietta Corporation, and by
assistance in various forms from the following colleagues: Beth Biddle,
George Heyliger, Damon Ostrander, Jim Randoliph, Dwight Rudolph, Wayne Simon
and John Ulrich.

VECLIB

FTANPIL
XCORD {
XCORDN
YCORD 1
YCORON
ZCORD1
ZCORDN
POSVEC
SUMVEC
NEGVEC
DIFVEC
ISTVEC
RSTVEC
VECTIS
VECTRS
VECINN
VECPRO
VECQIS
VECQRS
PABVEC
PBBVEC
MABVEC
MBBVEC

:(# VECLIB.

LAST REVISION 19 MAY 1983, ADDED MIN REAL .

THIS 1S A LIBRARY OF OPERATORS AND PROCEDURES FOR USE WITH THE
MODE ’VEC’, A NORMAL INTERPRETATION OF WHICH IS THAT OF A THREE-
DIMENSIONAL SPATIAL VECTOR. #

SMALL NUMBER CLOSE TO MACHINE LIMIT =

7.
9,
6,
5,
5;

3.0 E -293;

1E6 + MIN REAL;

= /STRUCT’ (’REAL’ XCQOORD, YCOORD. ZCOORD);

ON INDETERMINATE VECTOR := (‘VEC’ v)

'vo1D’: (WRITE ((NEWLINE,

‘PRID’ ><
*SCALEDTO’
‘MADEPERPTO’
’PARLTO’
'PERPTO’

‘REAL’ MIN REAL =

REAL’

‘MODE’ 'VEC’

‘PROC’

‘PR'PROG’PR’

SKIP’)

‘PROC’ PIARCTAN =

rop’ Xt =

op’ e -
op’ rye -
op’ rye =
0P’ rze -
rop’ rze -

‘op’ + -

rop’ + =

op’ - =
0P’ - -

‘oP’ * =

‘op’ * =

rop’ . =

‘OP’ * =

‘oP* * =

‘oP’ >< =

‘OP’ / =

‘OP’ / =

‘QP’ 4= =

‘op’ ’PLUSAB’ =

‘opP’ -= =

‘0P 'MINUSAB’ =

*ATTEMPTED CREATION OF AN™,
v INDETERMINATE VECTOR.", NEWLINE, *INPUT ",
“VECTOR 1S PRINTED BELOW AND PROGRAMME™,

» TERMINATED.", NEWLINE, NEWLINE, V)); STOP);

(’REAL’ SIN, COS) ‘REAL’:

(‘VEC’ U) ‘REAL‘:

({} 'VEC’ V) {} ‘REAL’:

(/VEC’ U) ‘REAL’:

({} ’VvEC’ V) {) ‘REAL’:

('VEC’ U) ‘REAL':

({} *vec’ v) {} ‘REAL’

('VEC’ U) 'VEC':

(’VEC’ U, V) 'VEC’:

(‘VEC’ U) ‘VEC’:

('VEC’ U, V) 'VEC':

(“INT” I, ‘VEC’ U) ’VEC’:

(’REAL’ R, ‘VEC’ U) ’VEC':

('VEC’ U, ‘INT’ 1) ‘VEC':

(‘VEC’' U, ’REAL’ R) ‘VEC’:

(’VEC’ U, V) ’REAL‘:

(‘VEC’ U, V) ‘VEC’:

('VEC’ U, C‘INT‘ 1) ’VEC‘:

(‘VEC’ U, ‘REAL’ R) 'VEC':

(’REF’ ’VEC’ U, ‘VEC' V) ’'REF’ ‘VEC':
(/REF’ °VEC’ U, ‘VEC’ V) ’REF’ ‘VEC':
(’REF’ ‘VEC’ U, ‘VEC’ V) ‘REF’ ‘VEC’:
(’REF’ ‘VEC‘ U, ‘VEC’ V) 'REF’ ‘VEC':

AND SO ON

APPENDIX A. TYPICAL LIBRARY HEADERS

THE €DC IS NOT SYMMETRIC,
FILL-IN.

THIS 1S A TEMPORARY

USED IN OPERATORS ‘SMALL’.

MODE DECLARATION.

EVENT ROUTINE FOR RUN-TIME CREATION OF AN
INDETERMINATE VECTOR SUCH AS THE UNIT VECTOR
OF THE ZERO VECTOR; USER ALTERABLE.

END OF VECLIB PRELUDE.
END OF VECLIB POSTLUDE.

THE ARCTANGENT OF SIN/COS ON {-PI. PI}.

X CO-ORDINATE OF U.

THE X CO-ORDINATE ROW OF A ROW OF VECTORS.
Y CO-ORDINATE OF U.

THE Y CO-ORDINATE ROW OF A ROW OF VECTORS.
Z CO-ORDINATE OF U.

THE Z CO-ORDINATE ROW OF A ROW OF VECTORS.
MONADIC POSITIVE FOR A VECTOR.

THE SUM OF TWO VECYORS.

MONADIC NEGATIVE FOR A VECTOR.

THE DIFFERENCE OF TWQ VECTORS.

PRODUCT OF INTEGRAL SCALAR AND VECTOR.
PRODUCT OF REAL SCALAR AND VECTOR.

PRODUCT OF VECTOR AND INTEGRAL SCALAR.
PRODUCT OF VECTOR AND REAL SCALAR.

THE INNER OR DOT PRODUCT.

THE VECTOR OR CROSS PRODUCT.

QUOTIENT OF VECTOR AND INTEGRAL SCALAR.
QUOTIENT OF VECTOR AND REAL SCALAR.
PLUS-AND-BECOMES FOR A VECTOR.
PLUS-AND-BECOMES FOR A VECTOR.

MINUS -AND-BECOMES FOR A VECTOR.
MINUS-AND-BECOMES FOR A VECTOR.

&
w
(=]
v
N
“n

PPENDIX YRAY

*BEGIN’ iy
FINCL’ =
VECPRO, # THE VECTOR PRODUCT #
SUMVEC., # THE SUM OF TWO VECTORS #
SKIP
TLCNL*;

‘VEC’ Vi, va, V3, Vva; READ ((V1, NEWLINE, V2, NEWLINE. V3));
V4 = V1 >< (V2 + V3):
WRITE (("THE ALGORITHM RESULT IS: ", va)):

7SK1P”
’END’ # OF A DEMONSTRATION PROGRAMME #

* SOURCE LISTING = A8 1.3.1 82330 83/09/01. 12.07.33. PAGE
1. ‘BEGIN’
2.
a.
4. ‘op’ + - ('VEC’ U, V) ‘VEC’:
5. ‘PR’ XREF SUMVEC ‘PR’ ‘SKIP’;
6. op’ >< = {'VEC’ U, V) 'VEC’:
7. ‘PR‘ XREF VECPRO ‘PR’ ‘SKIP’;
8.
8.
10.
11, ‘VECY Vi, V2, V3, va; READ ((V1, NEWLINE, V2, NEWLINE, V3)):
12.
13. V4 = Vi >< (V2 + V3);
14,
18. WRITE (("THE ALGORITHM RESULT IS: *, v4));
16.
17. ‘SKIP’
18. ‘END’ # OF A DEMONSTRATION PROGRAMME #
PROGRAM LENGTH 0002238 WORDS
REQUIRED CM 082600. CP .410 SEC. '
SPECIFIED OPTIONS 1CLBOP

9z+dos qv

VECLIB

FTANPI

UNTVEC
“INCL'

ROTVEC
“INCL

:(# VECLIB.

LAST REVISION 19 MAY 1983, ADDED MIN REAL.

THIS IS A LIBRARY OF OPERATORS AND PROCEDURES FOR USE WITH THE
MODE ‘VEC’, A NORMAL INTERPRETATION OF WHICH 1S THAT OF A THREE-
DIMENSIONAL SPATIAL VECTOR. #

'PRIO’ >< = 7.
‘SCALEDTO’ = 9,
‘MADEPERPTO’ = 6,
‘PARLTO' = 5,
‘PERPTO’ - S:
*REAL’ MIN REAL = 3.0 E -293;
‘REAL’ SMALL NUMBER CLOSE TO MACHINE LIMIT = {E6 * MIN REAL;
‘MODE‘ ‘VEC’ = ‘STRUCT’ (‘REAL‘ XCOORD, YCOORD, ZCOORD};
PROC’ ON INDETERMINATE VECTOR := (‘VEC’ V)
VOID’: (VRfTE ((NEWLINE, “ATTEMPTED CREATION OF AN",
* INDETERMINATE VECTOR.", NEWLINE, “INPUT ",
"WECTOR IS PRINTED BELOW AND PROGRAMME",
* TERMINATED.", NEWLINE, NEWLINE, V)): STOP):
PR’PRDG’PR’
SKIP’)
‘PROC’ PIARCTAN = (‘REAL’ SIN, COS) ‘REAL’:
{’REAL’ S := SIN, C := COS:
‘PROC’ ATAN2 = (’REF’‘REAL’ S2, C2) ’REAL’:

‘PR’ XREF AG8FTN, ATAN2 ‘PR’ ‘SKIP‘;
ATAN2 (s, C))

‘oP’ ‘E’ = (’VEC’ U) 'VEC':

ABSVEC, VECORS ‘LCNI‘;

(’REAL’ ABSU = 'ABS’ U;

(ABSU > SMALL NUMBER CLOSE TO MACHINE LIMIT | U / ABSU
! ON INDETERMINATE VECTOR (U); ‘SKIP’));

PROC’ ROTATION OF = (/VEC’ V, AXIS, ‘REAL’ ANGLE) 'VEC':

VECTRS, SUMVEC, VECPRO, WUNTVEC ‘LCNI’;

("VEC’ AX = ‘E’AXIS; ‘VEC’ AXV = AX >< V; 'VEC‘ VP = AXV >< AX;
V + VP » (COS (ANGLE) - 1) + AXV * SIN (ANGLE));

APPENDIX C. TYPICAL LIBRARY SOURCE CODE

AR e A . AL A e et

THE CDC IS NOY SYMMETRIC, THIS 1S A TEMPORARY
FILL-IN.

USED IN OPERATORS ‘SMALL’.

MODE DECLARATION.

EVENT ROUTINE FOR RUN-TIME CREATION OF AN
INDETERMINATE VECTOR SUCH AS THE UNIT VECTOR
OF THE ZERO VECTOR; USER ALTERABLE.

END OF VECLIB PRELUDE.
END OF VECLIB POSTLUDE.

THE ARCTANGENT OF SIN/COS ON {-PI, PI}.

UNIT VECTOR IN THE DIRECTION OF U.

ROTATES V ABOUT AXIS THROUGH ANGLE
ACCORDING TO RIGHT HAND RULE.

Lz-dos gv

