ISSN 0084-6198

Algol Bulletin no. 49

MAY 1983
CONTENTS PAGE
AB49.0 Editor's Notes 1
AB49.1 Announcements
AB49.1.1 Hans Bekic 2
AB49.1.2 Yet another definition of ALGOL 60 3

AB49.1.3 Book Review - Correctness Preserving Program

Refinements: Proof Theory and Applications 3
AB49.1.4 Book Review - A Bibliography of Lambda-Calculi 3
AB49.1.5 Book Review - Deterministic Top-down and
Bottom-up Parsing (Bibliography) 4
AB49.1.6 Book Review - ALGOL 68 Preludes for Arithmetic
in Z and Q 4
AB49.2 Letter to the Editor
AB49.2.1 RS ALGOL 68 Implementérs Group (RIG) 5
AB49.3 Working Papers
AB49.3.1 Clarification to Modified ALGOL 60 7
AB49.4 Contributed Papers
AB49.4.1 C.H.Lindsey, A Proposal for Exception
Handling in ALGOL 68 10
AB49.4.2 Martyn Thomas, An Exception-Handling Mechanism
for ALGOL 68 16

AB49.4.3 E.F.Elsworth. A Self-replicating Program
in ALGOL 68C 18

AB 49p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group
on ALGOL of the International Federation for Information Processing (IFIP WG2.1.
Chairman Robert B. K. Dewar. Courant institute).

The following statement appears here at the request of the Council of IFiP:

"The opinions and statements expressed by the contributors to this Bulletin do not
necessarily reflect those of IFIP and IFIP undertakes no responsibility for any
action that might arise from such statements. Except in the case of IFIP
documents, which are clearly so designated. IFIP does not retain copyright
authority on material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No reproduction may be
made in part or in full of documents or working papers of the Working Group itself
without permission in writing from IFIP."

Facilities for the reproduction of the Bulletin have been provided by courtesy of
the John Rylands Library. University of Manchester. Word~processing facilities have been
provided by the Barclay’s Microprocessor Unit, University of Manchester. using their
Vuwriter system.

The ALGOL BULLETIN is published at irregular intervals. at a subscription of $11
(or £6) per three issues. payable in advance. Orders and remittances (made payable to
IFIP) should be sent to the Editor. Payment may be made in any currency (a list of
acceptable approximations in the major currencies will be sent on request). but it is the
responsibility of each sender to ensure that his payment is made in accordance with the
currency requirements of his own country. Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor. since it is not the
policy of IFIP that anyone should be debarred from receiving the ALGOL BULLETIN for
such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey.
Deapartment of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers. when available. will be sent at $4 (or £1.80) each. However, itis
regretted that only AB32. AB34, AB35, AB36. AB38-43 and AB45 onwards are currently
available. The Editor would be willing to arrange for a Xerox copy of any individual paper
to be made for anyone who undertook to pay for the cost of Xeroxing.

AB49.0 EDITOR'S NOTES.

ALGOL 60 Standardization

The fong process of producing as !SO Standard for ALGOL 60 is about to
terminate. The draft which was voted upon by the various member bodies of iSO
contained a reference to the Modified Report (actually. Clause 6 of the Draft Standard
simply stated that the text of the Report was deemed to be inserted at that point).
Now. the ISO Secretariat have decided to print the actual text in this place (howsever.
what they print is actually a photograph of the text from the Computer Journal., but
with all the published errata incorporated. so there is no need to worry that some
suibtle change has crept in). It will be known as ISO Standard 1538 and. if there
are no last minute hitches. it should be published about the same time as this
bullstin.

This issue of the Bulletin also contains a clarification to the Modified Report.
This has been approved by the Working Group. It does not alter the language In any

AB 49p.2

way, but it may save you some effort in trying to puzzle out what the Report means
in the particular situation considered. .

ALGOL 68 Standardization

This has now reached Its critical stage. After various administrative delays. the
formal proposal from IFIP to 1SO finally resulted In a letter ballot of the member
countries of ISO/TC97. The votes have to be returned by the beginning of May. and
we have to get at least 5 countries who will agree to "participate™ in the work. Thus.
| cannot tell you what is going to happen yet. but keep your fingers crossed!

Exception handling in ALGOL 68

The ALGOL 68 Support Subcommittee of WG 2.1 has been considering
exception handling at its last few meetings. There have been two proposals under
consideration. One. which is all done with routine-texts, is designed to be readily
added to any existing Iimplementation simply by writing some additions to the
standard-prelude (maybe even a customer of the implementation could do it himseif) .
However, this causes the syntactic sugar for what the user has to write to be a little
bit cumbersome. The other is considered to be more convenient in use. but it seems
that, at least in some styles of implementation. It will be necessary to tinker with the
compiler in order to implement it.

As well as finding difficulty in choosing between these two schemes. the
subcommittee is aiso in some doubt as to whether it is proper to produce even
semi-officlal emlensions to ALGOL 68 at this late stage. Since both schemes are now
well~defined and understood. it has been decided to publish them both in this
bulletin. but without any official recommendation. Comments from you (and even triai
implementations) are now in order, and it may be that the Subcommittee will
reconsider the matter at a future meeting.

AB49.1 Announcements.

AB49.1.1 Hans Bekic 1936 - 1982

Hans Bekic. who was for many years a member of IFIP Working Group 2.1,
died in a mountaineering accident on October 24th., 1982. Since 1961, he had been
a leading member of the IBM Laboratory Vienna. where he was heavily involved,
firstly. in the formal. operational. definition of PL/1 and. latterly. in dentotional
methods of language definition (and especialy their application to parallel
processes) .

For his WG 2.1 associations, however. one must look first of ail to his work
on ALGOL 60 - his implementation. with Peter Lucas. of that language (one of the
few to take account of all the concepts of ALGOL 60), and Its systematic
transformation into a more primitive language (effectively the first successful formal
definition of the semantics of a programming language). He was Iinvolved in the
discussions leading up to the definition of ALGOL 68. but my own chief recollection
of him was his attempts. spread over many meetings during the revision of ALGOL
68. to persuade us to relax the scope restriction on routines (so as to enable
composition of functions. and the like). He did not win this particular battle but we
did. afterwards. prepare a partial-parametrization feature for the language which gave
many of the same bensefits.

His work was aiways marked by depth. insight and extremely high personal
standards. He published little. but his unpublished manuscripts were circulated and
referenced widely. The influence of his achievements will still be felt for many years
to come.

C. H. Lindsey
(with help from H. Zemanek and C.B. Jones)

AB 49p.3
AB49.1.2 Yot _another definition of ALGOL 60

Ever since the work by Bekic mentioned above. ALGOL 60 has been used as
a Test Bed by those who wanted to try out their latest formal Ianguage—deﬂryltlon
technique. The latest in this line is a denotational definition using the Vienna
Development Method (VDM). and contained in the book “Formal Specification and
Software Development” by Dines Bjgrner and Cliff B. Jones. published by Prentice
Hall (at an exorbitant price for which Cliff denies all responsibility).

AB49.1.3 Book Review : Correctness Preserving Program Refinements: Proof Theory
and Applications

by R.J.R. Back.
Mathematical Centre Tracts 131. Amsterdam 1980.
ISBN 90 6196 207 2.

This 118 page monograph presents an interesting theory of program design by
stepwise refinement. The author rightly points out that the weakest pre-condition
technique described by E.W. Dijkstra does not handle data refinement proofs. (_This
criticism can also be applied to many other books on program proofs - e.g. "The
Science of Programming” by D. Gries.) Here. the author presents a notion of
specification and refinement which embraces both decomposition of control structure
and refinement of data.

Specifications are written with “atomic descriptions®*. These both contain a
logical expression and bind variables: this combination takes some time to get used
to! An infinitary logic is used in which Iinfinite disjunctions and conjunctions over
formuiae are allowed. Little detailed justification is given for this choice beyond
claiming that such expressions are needed to express the weakest pre-condition of
loops.

The semantics of specifications are relations and. following de Ba.kkelr.
undefined elements are introduced to indicate non-termination of non-—deterministic
constructs. There is some discussion of unbounded non-determinism. It would have
been interesting to have a comparison with D. Park’s transfinite approach (cf.
Springer LNCS No. 86) . The ultimate reason for rejecting unbounded
non-determinism is the inability to express such specifications in the chosen logic
because of the restriction to a countable number of terms.

This is an extremely readable report which represents a development of the
author’s thesis. The only general criticism is that the examples are rather small.

C.B. Jones
Manchester

AB49.1.4 Book Review : A Bibliography of Lambda-Caiculi. Combinatory Logics and
Related Topics

by A. Rezus. Mathematisch Centrum. Amsterdam 1982.
ISBN 90 6196 234X.

This is an extensive bibliography of nearly 80 pages plus two Addenda of a few
pages each. As a source of references it wili no doubt be of considerable use.to
experts in the field. There is. however, little to aid the non-e)_(pert in finding
interesting material. There are no "annotations™. Furthermore. there’ is no attempt to
classify the material along the lines suggested in Henk Barendregt's foreword (i.e.
pure theory. the theory related to foundations, applications).

C.B. Jones
Manchester

AB 49p. 4

AB49.1.5 Book Review : Deterministic Top-Down and Bottom-Up Parsing: Historical
Notes and Bibliographies

by Anton Nijhoit.
Mathematisch Centrum. Amsterdam.
ISBN 90 6196 245 5. Price Dfl 16.50.

This blbllography contains over 1000 references. dealing primarily with
theoretical problems In the theory of parsing. but also covering some more
application—oriented Issues. such as compiler construction techniques.

The book is divided into three main sections, covering Top—down Parsing (i.e.
LL(k) methods). LR-Grammars and Parsing. and Precedence Parsing. Each section
starts with a survey covering the History of the particular method. the Formal
Properties of the relevant grammars. the assoclated Parsing methods., Error
Handling. Parser Generators. etc.

The three Bibliographies themseives are exceedingly thorough. entries from the
most obscure journals taking their place beside all the classical papers on the
subject. However. the entries are given only in strict alphabetical order of first
author's name. with only the title of the paper and the bibliographic reference. There
Is. In general. no way to identify a paper on a particular topic. save for those
papers which are explicitly referenced in the introductory surveys (although these do
Indeed include all the most important papers). How much more useful the book would
have been with only one sentence to say what each paper was about (for titles of
papers are notoriously unhelpful in this respect).

C.H. Lindsey
Manchester

AB49.1.6 Book Review : ALGOL 68 Preludes for Arithmetic Iin Z and Q

by Guenter Baszenski
Rechenzentrum der Ruhr-Universitaet Bochum, 1982.
Report No. 8203 ISSN 0341-0358.

This paper defines (and provides implemantations for) two ALGOL 68 preiudes
- one for performing arithmetic on integers of arbitrary size and one for performing
arithmetic on rational numbers.

In the long-integer prelude. the mode LINT is defined together with operators
t - * % MOD ** +:= -:= *:= %:= MODAB ABS ODD SIGN plus the
usual reiational operators. These also work between LINT and INT and v.v. There
are conversion operators L and /., from and to INT, and also a procedure over. to
give quotient and remainder. and operators FAC (factorlald). C (binomial
coefficients), GCD and LCM. Special transput and conversion procedures are
provided for LINTs. The implementation is in terms of a sign and a modulus, which
is stored as a row of INTs on the heap. It runs on the CDC implementation of ALGOL
68. but contains nothing that should prevent porting to other implementations.

The rational prelude defines the mode RAT. which is a structure of two LINTs.
The operators provided are exactly those provided for the mode REAL in the ALGOL
68 standard-prelude. and work for ail sensible combinations of RAT. LINT and INT
(however. a special operator FA had to be provided for division of two INTs. because
/ Is already defined in the standard-prelude to yield REAL in this case). As with
LINTs. there are special transput and conversion routines.

It is not stated. but | would think it reasonable to suppose that both preludes
would be available in machine-readable form from Bochum.

C. H. Lindsey
Manchester

AB 49p.6

AB 49p.5
AB49.2 Letter to the Editor are provided; on the plus side, RS systems contain a most powerful
» P and secure modular compilation system).
South West Universities
H Another activity of RIG has been to produce a standard test set
Reglonal comPUter centre for RS implementations. This consists of the MC (Amsterdam) tests,
University of Bath modified where appropriate to allow for language differences, along
Claverton Down with a set of tests developed by Bernard Houssais at the University
) Bath BA27AY of Rennes (where they are using the Honeywell Multics implementation
’ of RS Algol 68). The Rennes tests are generated automatically from
Bath (0 7
Director J R Brookes MA Fecs Telephone at;bﬁf)ﬂﬁ ; a description of Algol 68 syntax and have proved remarkably successful

18 February 1983

Dr C H Lindsey

Editor, Algol Bulletin
Dept of Computer Science
University of Manchester
MANCHESTER

M13 9PL

Dear Dr Lindsey

I would like to inform readers of 'Algol Bulletin', particularly
those interested in Algol 68, about the formation of the RS Algol 68
Implementors Group (RIG), and to describe some of the work we have
done.

v
As the name suggests, members of the group are implementors of
Algol 68 systems based on the portable Revised Report "RS" compiler
front end from RSRE Malvern (described in RSRE Technical Note 802).
RSRE themselves are also represented. The group has been meeting
regularly since May 1981, its principal objectives being to maintain
compatibility between RS implementations, to provide a forum for the
discussion of common problems and points of interest between
implementors and RSRE, and to promote the use of Algol 68 in general.

Compatibility is seen as very important for user acceptance of

future implementations; we feel it is highly desirable that source
programs should be readily portable from any one RS implementation

to any other, and that there should be a consistent user view of the

RS 'family' of compilers. The RS system itself, on the other hand,
permits considerable flexibility in the implementation of the back end
translator and the run-time software. Consequently, RIG has agreed

on a set of standards and guidelines for implementors to follow so

that compatibility is maintained. This compatibility will become

even more important early in 1983 with the publication by Edward Arnold Ltd
of a new Algol 68 text book, aimed primarily at users of RS systems,

and written by Philip Woodward and Susan Bond. (Many readers will recall
with affection their 'Algol 68-R Users Guide').

To clarify any misconceptions readers might have, I should point out
that RS Algol 68 was designed to be very much closer to the Revised
Report than Algol 68-R, its popular predecessor from RSRE. RIG has

in fact spent some time reviewing the language implemented by the

RS compiler, and as a result, many minor restrictions and deviations
from the Report have been removed. (The main remaining restrictions
are that, apart from labels and simply recursive procedures, identifiers
must be declared before they are used, and that no parallelity features

at weeding out obscure bugs in the compilers.

Incidentally, the information given in AB47 on available RS
implementations is now out of date. The ICL 2900 Series implementation
is available under VME/B and VME 2900 (not VME/K) and there is now

an implementation for Honeywell Level 68 machines under the Multics
operating system. This implementation is available at commercial

rates (but at a nominal charge for educational use) and is now in use at
six installations in Europe and North America. Further information

may be obtained from

Systems Development Manager

South West Universities Regional Computer Centre
University of Bath

Bath BA2 7AY

UK

In addition, SPL are currently developing an RS implementation for
the VAX, and RSRE have implemented RS Algol 68 on their own Flex
architecture. An implementation for Motorola 68000 is also being
carried out as a research project at the University of Cambridge.
We are naturally keen to encourage additional implementations and
would be pleased to provide information and assistance to anyone
interested.

Finally, one objective of RIG that has been relatively neglected so
far has been that of promoting Algol 68. Why is is that Algol 68,
despite almost invariably becoming the preferred language of anyone
who takes the trouble to learn it, has failed to become widely used?
To my mind the principle failure has been one of marketing, and here
all of us in the Algol 68 community must share the blame; for too
long we have been unduly inward-looking, ignoring the outside world
of FORTRAN and Pascal programmers who fail to realise the benefits
they are missing. Can I therefore exhort all of you who are interested
in saving the language to think seriously about what can be done, and
to be conscious of any opportunities that may arise to put forward
the merits of the Algol 68 case (no pun intended!).

Yours sincerely
o Fanie

Gavin Finnie
Secretary, RIG

AB 49p.7

AB49.3.1

Clarification_to Modified ALGOL 60.

The following clarification has been issued by IFIP Working Group 2.1. and

deals with a question which was raised in connection with the Modified Report on the
Algorithmic Language ALGOL 60. This clarification is not to be construed as a
modification to the text of the Modified Report.

Interpretation_of "call by name” where the actual and formai parameters differ in

1

1.1

1.2

1.3

type.

.__Introduction

The Moadifled Report on ALGOL 60 (section 4.7.3.2) says that. when a formal
parameter is called by name. "If the actual and formal parameters are of
different arithmetic types. then the appropriate type conversion must take
place. lirrespective of the context of use of the parameter.” A query having
been raised about the exact meaning of this requirement. it seems worth while
to try to clarify it. The aim is solely to make a clarification. not to change
the intention.

First it should be noted that ALGOL 60 has only three types. of which Boolean
Is not arithmetic, so It is only conflicts between real and Integer that are
Involved. The possible cases are (1) real (integer) actual parameter with
integer (real) tormal parameter (2) real procedure (integer procedure) actual
parameter with integer procedure (real procedure) formal parameter.

A preliminary version of this note was published, in translation. In the Russian
version of the Modified Report (Translator A.F. Rar. Editor A.P. Ershov.
Moscow. 1982). However. that preliminary version has been found to be
inadequate in that it did not allow for the case where a formal parameter is
used as an actuval parameter in a further procedure statement., nor the case
of an assignment statement with more than one left part.

2. Interpretation

2.1

If an actual parameter. called by name. and the corresponding formal
parameter are of different arithmetic types. then the formal parameter is said
to be ili-matched. If an actual parameter. called by name. Is itself an
lli-matched formal parameter. then the corresponding formal parameter is also
sald to be ill-matched.

For the following explanation. let the functions p and ¢ be defined as:

integer procedure p(h);
value h; real h;

p := h;

real procedure ¢ (k);

value k; Integer k;

¢ .= k;

Note: the Greek letters p and ¢ have been used for these functions to avoid
any clash of identifier with those of the program., and to make ciear that
these are not standard functions that can be used by a programmer. For
ease of human understanding, p may be pronounced ‘round’ and ¢ may
be pronounced ‘float’ if desired.

If a formal parameter Is ill-matched. then each use of It in the procedure
body. other than as a destination or as an actual parameter called by name.

2.4

AB 49p.8

Is treated as If enclosed in parentheses and preceded by p. If furthermore it
Is specified as real/ (or as real procedure) the function designator so formed
Is treated as if enclosed in further parentheses and preceded by ¢. In the case
of a typed procedure its actual parameter part is, of course. also contained
within the parentheses.

It a formal parameter is ill-matched and is used as a destination, the
arithmetic expression whose value is to be assigned is treated as if enclosed
in parentheses and preceded by p.

Automatic type changes across an assignment may occur, according to the
usual rules. after the above operations have been applied.

The above operations. together with the other operations mentioned in sections
4.7.3.2 and 4.7.3.3 of the Moditied Report. may lead to a left part list
containing destinations of different types. in violation of the first sentence of
section 4.2.4. in such a case. the strict interpretation would be that the
procedure statement is undefined because it has not led to a correct ALGOL
statement. as required by section 4.7.5.

However, it may be found more convenient to allow such a construction as an
extension. in which case the process should take place in three steps as laid
down in section 4.2.3. except that the value assigned should be the value of
the expression for all destinations that are of real type and not ill-matched.
p(the value of the expression) for all destinations of integer type and not
ill-matched, $(p(the value of the expression)) for all iti-matched
destinations. The expression is to be evaluated once only, however, not
three times.

3. Notes and Examples

3.1

in the program

begin real s, t;

procedure t (x, z); Integer x; real z;
begin
Z = 74X, X = Z4x
end f;

s :=3.1;t := 8. 1;

f(s, v); print(s); print(t)

end

the procedure statement f(s. t) is treated as

begin
t o= ttpls); s .= p(t+p(3s))
end

Consequently the values printed are 7171.0 and 8. 1.

It may seem surprising that. if the actual parameter is integer and the formal
parameter is real. both p and ¢ are applied. This is necessary however in
special cases. and does no harm in other cases. Consider:

begin real x, 2;

procedure b (y); real y; z := y;
procedure a (/); integer j; b(j);
x ;= 12.7; a(x); print(2)

end

In this program z := y is interpreted as z := ¢(p(x)). The p is necessary as
Zz is given the value 13.0. not 12. 7. because it has passed through the integer
parameter j. The ¢ is necessary to make y of real type within the b procedure.
In the above case ¢ is not essential (but does no harm) as the change ot

AB 49p.9

type of the assigned value happens automatically as it is assigned to z. but
the fact that y is real is important in its own right (for example to disallow y+2,
as integer division is allowed only for operands of integer type).

it may also seem surprising that, when a formal parameter is used as a
destination, p is always used but not ¢. This is because. Iif there is
i-matching at any stage. the integral value is required. If the expression Is
already integral p does no harm. ¢ is not required. as a change of type is
automatic, if needed., across an assignment. The argument in 3.2 above.
concerning integer division, does not apply here because the entire expression
is having the function applied to it.

The program

begin Integer i;
procedure t (y); real y;

begin real x;
x =y := 13.3; print(x); printty)
end f;

(), print()

end
is technically incorrect because
x ;=i := 13.3

Is incorrect. Compliler writers. however. will probably find it considerably easier
to allow it as an extension than to detect it as erroneous. If such an extension
Is permitted. the three values to be printed should be 73.3 (for x), 713.0 (for
y) and 13 (for). (The print procedure might not, of course. distinguish
between the last two in the form of its printing.)

AB 49p. 10

AB 48.4.1
A Proposal for Exception Handling in ALGOL 68.

by C.H. Lindsey
(University of Manchester)

1. Informal Description.

Even in programs which are logically correct. exceptional things can happen. When
presented with inappropriate data. time and space can become exhausted. numbers can
go out of range., and matrices can turn out to be singular. Sometimes, these exceptions
are detected by hardware or by the impiementation (we call these “system exceptions") .
Sometimes, they are detected by tests incorporated by the programmer (we call these
“user exceptlons") . Sometimes. they are not detected at ail (e.g. because some run-time
check has been turned off - we call these "undetected exceptions”). The Report does
not distinguish between system and undetected exceptions — it merely states that at such
a point the further elaboration Is undefined (R1.1.4.3.b. 2.1.4.3.h, 2.2.2.b). In actual
implementations, a system exception usually causes immediate suspension of the program
with sultabie diagnostic messages. An undetected exception allows the program to
continue with erroneous results., possibly triggering a system or user exception later
on.

In many sltuations, suspension of the program could be most embarassing. A
database might be left in an iInconsistent state. Some piece of equipment being
controlled might fail. Results already accumulated might be lost. The user. particularly
an interactive one, might have preferred to ignore the data that caused the trouble and
to continue with the next input. The system to be described allows the programmer to
specify traps for both system and user exceptions.

A “trap" is a routine to be called only when the associated exception happens.
Different traps may be assoclated with different kinds of exception. and the association
lasts throughout a specific range (unless reassociated within an inner range. of course).
In our proposal, this range is some routine-text. and we will illustrate the method with
an example of a user exception for handling singular matrices.

EXCEPTION singular = new exception; % EXCEPTION Is a new mode #
PROC gauss = (REF [,] REAL a, REF [1 REAL rhs) VOID:
COMMENT a procedure to solve a set of slmultaneous
equations COMMENT
BEGIN C the usual algorithm for gaussian elimination which, at some
point, may discover that a is singular C;
IF C it makes this discovery C
THEN RAISE singular
Fi;
C rest of algorithm C
END;

Within some given range of his program the user decides how he wants to handle
this situation:

I[1:n, 1:n] REAL matrix, [1:n] REAL r;
handle (VOID:
BEGIN # of range in which the proposed trap is to apply #
C compute matrix etc. C;
gauss (matrix, r);
C process the results in r C
END # of range of trap # ,
TRAP (singular, VOID: (
print("matrix was singular; proceed with next case”);
GOTO next case))

AB 49p. 1N

where next case Is a suitable label elsewhere in the program. Here handle is a
procedure of mode PROC(PROC VOID, [] TRAP). where
MODE TRAP = STRUCT(EXCEPTION exc, PROC VOID handier).

Calls of handle will usually be written in this form. with routine—texts written in situ for
all the PROC VOIDs. In general. a row-display of TRAPs providing handlers for various
exceptions would be provided. but in this case there was just one. and so the rowing
coercion took care of it (observe the cast TRAP (..., ...) which is syntactically necessary
for the rowing to work properly. and is desirable for clarity in other cases).

This particular handlier was a very simple one. but was typical insofar as it finally
terminated with a jump. One could imagine a much more complex handler which made
some subtle alteration to matrix and called gauss again, possibly inslde a different call
of handle to deal with any further singularities. But, in general. a handler should finally
terminate with a jump (which, according to the syntax of the language. must be to some
label outside the call of handle). Of course. there may exist at some moment several
nested handlers for a given exception. For example. the programmer may have provided
some general handler for singular which enclosed most of his program: but at some
particular inside call of gauss, where he foresaw some particular possibility of singularity
arising. he might provide a more local one. When the exception occurs, it is always the
most local handler (in the dynamic sense) that is entered. If it terminates with a jump,
then the matter is presumed to be resolved. and the program continues from the label
Jumped to. If, however. It tries to return to its caller. it is presumed that the matter is
not resolved and the next outer handier is entered. Eventually. there will be no outer
handlers left and the program is aborted (presumably with whatever diagnostic printout
the system normally produces).

Since a handier will frequently do nothing but jump to a place where there is a
sensible continuation, it is possible to make use of the automatic "proceduring® of jumps
(RS. 4.4. 2. Case B) and the option of omitting the GOTO (neither feature available in ALGOL
68S. however). This combines well with the use of the completion-symbol (EXIT) in a
serial-clause (R3.2.1.b).

REAL x =
BEGIN
INT [, REAL y;
PROC reciprocal = (INT i) REAL: 1.0/1;
handie (VOID:
BEGIN read(j);
y = reciprocal(f);
END , '
(TRAP (arithmetic error, overfiow) ,
TRAP (others, other error))
)
EXIT
overflow:
max real
EXIT

other error:
print("bad input”®);
reciprocal (max int)
END

arithmetic error and others are built-in exceptions. In this case. arithmetic error
would catch division by zero. and others might catch troubles in read (assuming no
suitable event routine had been provided). Whatever happens. some value or other is
bound to get ascribed to x. The example ailso shows how a construct involving handie
can be made to return a result Cunfortunately, handle itself must always return VOID),
and also how objects should be declared in order that they may be visibie either inside
the handler or. as in this case. at the ptace that the handier lumps to.

The full tist of built-in exceptions is as follows. Not ali implementations will

AB 49p.12

necessarily be able to raise them ail. They have deliberately been left general since.
although one piece of hardware might be able to distinguish *floating point overflow" and
“division by zero” as two distinct cases. another might give the same Interrupt for both.
It is thought that no system should have difficulty In selecting the appropriate exception
from the following list. The errors listed within square brackets after some of the items
are specific transput errors recognised by J.C. van Vliet's implementation Mode! for
ALGOL 68 Transput (Mathematical Centre Tracts 110, Part 2): this suggested
alloocation may help to clarify the intent of those exceptions.

time exhausted
space exhausted :
there might not be much that a handler could actually do in these
cases
undetined value
cases where an operation on a value requires it to be well defined: e.g.
the destination of an assignation or an object to be dereferenced
arithmetic error
all kinds of overflow. division by zero, square roots of negative quantities.
etc.
bounds error [wrongmulit, posmax, posmin)
including errors in subscripts and In trimmers. Incompatibilities when
assigning complete muitipie values. and a few transput errors as
indicated
scope error .
transput Impossible [nowrite, noread, noestab, noset, noreset,
nobackspace, noshift, noreldf, nobin, noalter,
nomood, notopen, badidf, notavalll
mainly for when something is attempted for which the appropriate x possible
returns FALSE
file end lnocharpos, noline, nopage, smallline, wrongpos,
wrongset, wrongbacksp]
logical or physical file end

char error [no digit, wrongchar)
value error [wrongval, wrongbin)
format error fnotormat, wrongformat)

observe that the last five exceptions all correspond to specific calls of
undefined in the standard-prelude. and the last four are in general only
raised if no user’s event routine has been provided (or when same has
returned FALSE)

abort
to be RAISEd by users in order to abort their programs deliberately:
unless it had been explicitly trapped. the system’s usual postmortem
action would then ensue

others
any of the above or any user exception, for which no more specific handler
has been provided.

Note that there is no reason why a user should not RAISE a built-in exception
(one can even envisage sensible applications of this).

2. _Formal Definition

1. Standard prelude

The following forms are added to the standard-prelude. In these forms, .the
phrase “the calling of A". where A is an identifier or an operator, stands for “the
calling {R5.4.3.2.b) of the routine ascribed. during the elaboration of these forms.

to A",

AB 49p. 13

a)
b)

c)
d)
o)
f

g)

MODE EXCEPTION = STRUCT(INT F) ;
? PROC makexception = (INT i) EXCEPTION:
(EXCEPTION e; F OF = i; @) ;
? INT last exception := 1 ;
PROC newexception = EXCEPTION: makexception (lastexce :
: ption +:= 1) ;
MODE TRAP = STRUCT(EXCEPTION exc, PROC VOID handler) ;
PROC handie = (PROC VOID user program, [] TRAP traps) VOID:
user program ;
OP RAISE = (EXCEPTION e) VOID:
BEGIN
:‘;‘“ consider the environ in which the closed-clause suggested by
$ pseudo-comment {R10.1.3 Step 7} is being el ;
Wi p g elaborated C;
(C the considered environ is not the first environ
established {according to a declarative) during a
calling of handle C
OR
C the considered environ has been considered
previously during some other calling of RAISE from
which the elaboration of the ciosed-ciause suggested
gy this pseudo-comment is descended (R2.1.4.2.b)

)
AND
C the considered environ is n
o s o oneie ot the primal environ
DO C consider instead the environ upon which the considered
environ was established (R3.2.2.b) (or around which it was
established if no version to be established upon had been

specified) C
oD;
IF C the considered environ is not the pri i
En primal environ C

COMMENT the locale of the environ now considerad
corresponds {R2.1.1.1.b} to the parameters of the

newest. not heretofore considered. calling of
COMMENT . 9 handle

[] TRAP traps =
CO the traps parameter of that handle, i.e. CO
C the (multiple} value accessed inside the locale of
the considered environ by ‘STOWED letter t letter r
letter a letter p letter s’ {traps). where ‘STOWED’ is
the mode specified by TRAP C:
PROC others handler :=
VOID: RAISE e;
may be call i i
PROC handlgr ° ed if traps does not include others #
VOID: others handier;
will be called if traps do not i i
Tanp or O3 P es not include a specific
PROC choose trap = (I] TRAP traps) VOID:
examines the traps collaterally
IF UPB traps >= LWB traps
THEN (
¢ TRAP firstirap = traps{LWB trapsl;
F _OF exc OF firsttrap = F OF e
| handier := handler OF tirsttrap
t: F OF exc OF firsttrap = 0
)I others handler := handler OF firsttrap

choose trap (trapsiLWB traps + 1:)

AB 49p. 14

Fi;
choose trap(traps);
to assign a suitable routine to handler
handler;
COMMENT it the elaboration of handler Is terminated ({with
a jumpl}, then ail elaborations taking place within the
considered environ. or any newer environ, are
terminated {since the jump can only be to a label not
contained within the considered call of handle}.
otherwise, the elaboration of handler may RAISE an
exception not trapped within itself, or it may return
(whereupon the RAISE e which follows is
elaborated) : i
in either event some other handier is called or
ultimately, when the primal environ is reached (no
intermediate handler having been terminated).
undefined is called) .
COMMENT
RAISE e
ELSE undefined
Fi
END ;
h) EXCEPTION others = make exception(0) ;
[}] EXCEPTION time exhausted = new exception ; -
the operating system proposes to terminate the elaboration peremptorily
]
EXCEPTION space exhausted = new exception ;
% there is insufficient storage space to elaborate some generator or
call #
EXCEPTION undefined value = new exception ; .
some value is undefined (or nil) and the further elaboration depends
upon it #
EXCEPTION arithmetic error = new exception ;
the result of some arithmetic operation cannot be computed (or is
meaningless) #
EXCEPTION bounds error = new exception ;
one of the requirements in R5.3.2.2.a.Case A or Case B or
R5.2.1.2.a.Case B is not satisfied %
EXCEPTION scope error = new exception ;
the scope requirement in R5.2.1.2.b or R3.2.2.a is not satisfied
EXCEPTION transput impossible = new exception ;
a call of undefined consequent upon one of the possible procedures
(R10.3.1.3.b..h) returning FALSE., or upon an incompatibility of one
of the mood fields of a file (R10.3.1.3.a), or the attempted use of
an unopened file #
EXCEPTION tile end = new exception ;
a call of undefined consequent upon one of the get good procedures
(R10.3.1.6.e.1.9) returning FALSE #%
EXCEPTION char error = new exception ;
a call of undefined consequent upon char error mended OF some
FILE returning FALSE. or the suggested character being unsuitable #
EXCEPTION value error = new exception ;
a call of undefined consequent upon value error mended OF some
FILE returning FALSE #
EXCEPTION ftormat error = new exception ;
any of the calls of wundefined contained in get next picture
(R10.3.5.b) (or in do fpattern - see Commentary 12} #
EXCEPTION abort = new exception ; .
an exception which may be raised by the user for the purpose of
intentionally aborting the particular-program #
(Further declarations such as these may appear in the library-prelude.)

AB 49p.15

2. Sqmamlcs

a) When, during the elaboration of a particular-program. an action is interrupted
(R2.1.4.3.h) or the further elaboration becomes undefined (e.g. R1.1.4.3.b), and
the Iimplementation is able to detect that such a situation has arisen. then a "system
exception® may be ({indeed. it should be) raised {: if the situation is not detected,
it might be said that an “undetected oxception® has occurred. and if a formula
containing RAISE is elaborated. It might be said that a ‘user exception® has
occurred). .

b) The ralsing of a "system exception® consists of the elaboration. in the environ
of the Interrupted or undefined action, of a MONADIC-formula (R5.4.2.1.b},
whose applied-operator identifies the defining-operator (RA/SE) contained in
form 1.g above., and
whose operand yields the value (of the mode specified by EXCEPTION) that
was ascribed. during the elaboration of the standard-prelude or the
library-prelude. to some "appropriate” identifier.

c) It is not further defined which such identifiers shouid be considered the most
“appropriate” (since the manner In which interrupts etc. are classified and the
possibilities for further action thereafter vary so much from one implementation to
another}). However, the defining-identifiers contained Iin form 1. above are
accompanied by comments which suggest the circumstances envisaged as being
appropriate for each.

3. mplementation

it should be possible to incorporate the exception handling feature into an
existing compiler by modifying only the run-time system. leaving the compiler itself
untouched. The implementer has only to devise means of performing the foilowing
operations:

1. to follow the dynamic chain, starting from the stack frame of the current
routine and locating. in order. all stack frames between there and the bottom
of the stack. which must itself be recognizable as such;

2. to recognise any stack frame corresponding to a call of handie; if the
Implementation already provides a field within each stack frame to identify the
code that is being called. this Is no problem: in general, implementations can
be expected already to provide some such feature. since they mostly are able
to print out some identification of the active routines upon program failure;
once a stack frame for handle has been recognised. it is a simple matter to
find the value of its traps parameter;

3. to mark a stack frame for handle as having been “considered previously”: if
a spare bit can be found in the stack frame. this Is easy. alternatively, it
would be sufficient to replace the traps parameter of handle with a flat multiple
value (ailowing the gartbage collector to dispose of the old parameter) ;

4. to invoke the implementation's normal failure action. which is usuvally to print
a (more or less complete) list of the active routines, their local variables,
etc. . this Iinvocation should take place at the call of undefined at the end of
RAISE.

Acknowledements

The underlying idea behind this proposal came from Hanno Wupper. Many
other members of the WG 2.1 ALGOL 68 Support Subcommittee also contributed ideas
- notably Martyn Thomas. Chris Thomson and Martin Cole.

AB 49p.16

AB49.4.2
An_Exception~Handling Mechanism for ALGOL 68

by Martyn Thomas
(South Western Universities Regional Computer Centre. Bath. UK)

Objectives

This proposal Is designed to provide an exception—handling mechanism within
ALGOL 68 without any language changes. The mechanism shouid provide the following
facilities:)

- programmer-created traps for system exceptions:

- traps for programmer-defined exceptions.

Exception—-handlers should be bound dynamically to their exceptions. to allow a
handler to be set up before a library .procedure is called. to handle any untrapped
exceptions which are raised inside the procedure.

The Proposal

The handlers would normally be set up to trap exceptions within a
closed-clause. as follows:

BEGIN
on (overflow, overflow handler);
on(bound check, bound check handler);

b 'bo'dy of the closed-clause C

EXIT
overfiow handler:
C handle overflow exceptions C
EXIT
bound check handler:
C handle bound check C
END

User-exceptions are created by

EXCEPTION my exception = new exception;
raisetmy exception) CO this signals the new exception CO

The following are included in the standard-prelude:

a) MODE EXCEPTION = STRUCT(INT ?unique,);
b) PROC new exception = EXCEPTION:)
C guaranteed to yield an unique EXCEPTION value C;
c) PROC raise = (EXCEPTION e) VOID:
C signai e C;

d) PROC reraise = VOID:
C raise the current exception outside the range of the current handler.

ralse the standard exception no exception if there is no valid current
o P CExGE vOID 1) BOOL:

) PROC on = (EXCEPTION e, PROC h

° C set a trap for e. calling / when e is raised., calling system actIOfr if
I returns. Return FALSE if e may not be trapped (for example. ‘job
cancelled by operator’'). otherwise. return TRUE C;

AB 49p.17

f) EXCEPTION
overflow = new exception,
bound check = new exception,
underflow = new exception,

g PROC system action = VOID:)
C bhandle untrapped exceptions or any return from a user exception
handler C;

Discussion

When an exception is raised. either by the run-time system detecting some
exceptional condition or by the programmer calling raise. a search Is made for the
most recently established. In-scope handler for this exception. Control then passes
to the handler’'s PROC VOID (which will most commonly be a procedured jump). If
there is no valld handler, or if the PROC VOID returns, the standard postmortem
action is invoked by system action.

The main implementation problems with this proposal result from the attempt
to define a sensible range for a handler (i.e. when does a handler established by
a call ot on cease to be linked to its exception, so that a handler established at a
lower block-leve! Is reactivated?). It is clearly desirable that nested handlers are
permitted and safe. so that a library procedure can trap its own exceptions without
destroying the handlers set up in the environment embracing the call. For safety. and
for excelient philosophical reasons. it should be impossible for a mistake in the called
procedure to destroy the embracing handlers, so the reestablishment of the old
environment must be automatic once the range of the handier is left.

Unfortunately this implies some system action at the end of any range which
includes a call of on. and this probably ensures that this proposal will not be adopted
by any compiler currently in use. If the range of the handler Is defined in a way
which Is easier to implement without altering the runtime systems of existing
compilers, the behaviour of nested handlers becomes far harder for the programer
to understand and control.

Nevertheless. this proposal seems to be the simplest to use and to understand
in the common cases: it handles the exception conditions in transput in a
straightforward way and. as a final bonus, it provides a wholly acceptable use for
the completer EXIT. Comments on this proposal would be weicomed.

Acknowledgement

This proposal arose from discussions with members of WG 2.1 ALGOL 68
Support Subcommittee. notably Chris Thomson, Charles Lindsey and Lambert
Meertens.

AB 49p.18

AB49.4.3
A Self-replicating Program in ALGOL 68C

by E.F.Elsworth
(University of Aston, Birmingham, UK)

After reading [AB47.4.1] on self-replicating programs, I decided to try the
problem using Algol68C. The solution given for (standard) Algol 68 was the
following, entered as a single line:

(.STRING a="(.STRING a="";print(2*a[:12]+2#a[12:])";
print (2*a[:12]+2*a[12:]))

However Algol68C has two features which prevent the direct use of this solution:

i) Mode STRING is not equivalent to any ROW mode and so STRING values
can't be trimmed. (But the construction'iELEMs'can be used to obtain
the ith character of a STRING 's'.)

ii) * is used as an escape character in STRING and CHAR denotations, so
that to represent a literal quote character "*"" (and not ""“"") is
required, and "**" is required to represent literal *.

Nevertheless, we can still make use of the general principle behind the above
solution, which is:

A
head tar

STRINGa="STRINGa="";print (head+head+tail+tail)";
print (head+head+tatl+tail)

By adding some STRING-construction features to the head part and using these to
produce a satisfactory tail part, I was able to find an Algolé8C solution which
gets round problems (i) and (ii) above. Once again this needs to be input as a
single line; laid out for clarity, its form is:

STRING a="STRING a=",
=" RRE N .
t="*":orint (a, 2ELEMx,a, 2ELEMx, 6ELEMX,
3ELEMx, SELEMx, 2ELEMx, 1ELEMx, 1ELEMX, X, 2ZELEMx, 6ELEMX,
4ELEMx, S5SELEMx, 2ELEMx, lIELEMx, t,t) ";
print(a, 2ELEMx, a, 2ELEMx, 6ELEMx,
3ELEMx, SELEMx, 2ELEMx, 1ELEMX, LELEMX, X, 2ELEMx, 6ELEMx,
4ELEMx, 5SELEMx, 2ELEMx, 1IELEMX, t, t)

Note that in Algol68C a program is a series, not a closed clause, and that
‘print' only ever requires single brackets.

I now decided to test this using our local Algolé68C compiler, but ran into a

snag - it will not accept source lines longer than 132 characters! Seeing no
way to get an Algolé68C solution down to 132 characters, and always being keen
to test theory in practice, I now had to tackle the problem of constructing a
multi-line self-replicating program. Here is my solution:

OP% =(INTi,STRINGs)CHAR:iELEMs; STRINGa="OP% =(INTi,STRINGs)CHAR:iELEMs;
STRINGa=",x="***"xt=,", t="*

*".print(a,2%x,a, 2%x,6%x, 3%x, 5%x, 2%x, 1%x,1%x%, x, 2%x,6%x,4%x%, 5%x, 2%x,1%x,
newline,l%x,t,1%x,newline, t)*

";print(a, 2%x, 6%x, 3%x, 5%x, 2%x,1%x, 1%x,x, 2%x,6%x,4%x, 5%x, 2%x, 13X,
newline,1%x,t,l%x,newline,t)

AB 49p.19

Notes: i) 1 and 17, 2 and 27, 3 and 3° above should be entered as the
single lines 1, 2 and 3 of the program.

ii) To continue a string denotation onto a new line, Algol68C
requires a * before the end-of-line.

iii) The operator declation defining % as equivalent to ELEM is
necessary to save enough characters to get the ’print(....)'
part into one line. Even if a solution with this part split
can be found, it will certainly be significantly more complicated.
(The space after OP% is necessary to terminate the operator symbol).

This program has been successfully compiled and tested using our Prime Algol68C

system . ' . = Can anyone come up with a shorter Algol68C solution
whose correctness can be demonstrated by actual compilation and execution?

Reference

AB47.4.1 C. Thomson, 'Self-Replicating and n-cycle Programs',
ppl9-20, Algol Bulletin no. 47, August 1981

