ISSN 0084-6198

Algol Bulletin no.48

CONTENTS

AB48.0

AB48.1
AB48.1.
AB48.1.
AB48.1.

AB48.1.
AB48.1.

AB48.1.
AB48.4
AB48.4.

AB48.4.

AB48.4.

1
2
3
4
5
6

1
2

3

AUGUST 1982

Editor's Notes 2

Announcements
Barry J. Mailloux 2
Computers and Standards - new Journal 4
Proceedings of Van Wijngaarden Symposium 4
Numer ical Computation and Programming Languages 4
Michel Simonet, W-Grammars and First-order

Logic for the definition and

Implementation of Languages - Abstract 5
Book Review - Draft Proposal for the B
Programming Language 6

Contributed Papers

L.G.L.T.Meertens, Quick Reference to B 7
1.F.Currie and N.E.Peeling,
Modular Compilation Systems for High Level
Programming Languages 18
G.S.Hodgson, The NAG ALGOL 68 Library 27

AB 48p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the international Federation for information Processing (IFIP WG2.1, Chairman
Robert B. K. Dewar, Courant {nstitute).

The foliowing statement appears here at the request of the Council of IFIP:

“The opinions and statements expressed by the contributors to this Bulletin do not
necessarily reflect those of IFIP and IFIP undertakes no responsibility for any
action that might arise from such statements. Except in the case of IFIP
documents, which are clearly so designated. IFIP does not retain copyright
authority on materiat published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No reproduction may be
made in part or in full of documents or working papers of the Working Group itself
without permission in writing from IFIP."

Facilities for the reproduction of the Bulletin have been provided by courtesy of
the John Rylands Library. University of Manchester. Word-processing facilities have been
provided by the Barclay's Microprocessor Unit. University of Manchester. using their
Symbolex system.

The ALGOL BULLETIN is published at irregular intervals, at a subscription of $11
(or £6) per three issues, payable in advance. Orders and remittances (made payable to
IFIP) shouid be sent to the Editor. Payment may be made In any currency (a list of
acceptable approximations in the major currencies will be sent on request., but it is the
responslibility of each sender to ensure that his payment is made in accordance with the
currency requirements of his own country. Subscribers In countries from which the export
of currency is absolutely forbidden are asked to contact the Editor, since it is not the
policy of IFIP that anyone should be debarred from receiving the ALGOL BULLETIN for
such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey.
Department of Computer Science.
University of Manchester,
Manchester, M13 9PL.
United Kingdom.

Back numbers, when available, will be sent at $4 (or £1.80) each. However, it is
regretted that only AB32, AB34, AB35. AB36. AB38-43 and AB45 onwards are currently
availabie. The Editor would be willing to arrange for a Xerox copy of any individual paper
to be made for anyone who undertook to pay for the cost of Xeroxing.

AB 48p.2

AB48.0 EDITOR'S NOTES.

Firstly, let me apologise for the iong gap between the date on the last issue
(August 1981) and the date when it was actually mailed (late December). We had
problems in getting a decent reproduction of the Report and other documents contained
in the microfiche. One result of this was that the symposium to mark the retirement of
Professor van Wijngaarden was over by the time you received the notice of it. However
the proceedings of that symposium are now available, as announced eisewhere in this
issue.

Cambridge Conference

Some time ago. you received a Call for Papers for another ALGOL 68 Conference
to be held in Cambridge in December of this year. Unfortunately. there was not sufficient
response to enable the organisers to proceed. It is therefore regretted that the
Conference has been cancelled.

ALGOL _68_on _the VAX

Most of you will also have received a questionaire from SPL International. who
have been commissioned to study the market potential for a possible implementation of
ALGOL 68RS (the Maivern dialect aiready available on ICL 2900 equipment) on the VAX.
If the response Is good., they might even go ahead and implement it. So please will
everybody with even a marginal interest in such a project please respond. it is only by
vigorously responding to such Initiatives that we shall ever get ALGOL 68 more widely
implemented.

Inflation

The price of the ALGOL Bulletin has remained at $10 per 3 Issues since January
1980. However. even with the smaller size (which saves on postage as well as on
printing) it is oniy just breaking even — and we really ought to be buliding up a small
reserve. The last three issues were very thin on pages (for reasons which | keep
complaining to you about), but | would really like to budget on an average issue of 50
pages (which is still thin by some previous standards).

Therefore. most of you will see from the subscription notice enclosed with this
issue (although some people‘’s subscriptions are phased differently) that the price has
gone up to $11 per three issues, the sterling price being £6. To those of you who pay
in dollars. the increase may seem ftrivial. Not so to those who pay in sterling - which
all goes to show how unfair and unpredictable exchange rates are. My printing bill has
to be paid in sterling. and the rates quoted above do in fact allow for a little adverse
movement of the exchange rates in the future. !

AB48.1 Announcements.

AB48.1.1 Barry J. Mailloux: 1939 - 1882,

Bad news irom Canada. Even though we all knew Barry James Maliloux would not
live much longer, it still came as a shock to hear he died.

Exactly when Barry joined the Mathematical Centre in Amsterdam | do not recall.
but somewhere in 1966 our plotter started to be much more useful. Barry had brought
the wondertul world of Computer Graphics to Amsterdam. When | was grabbed by Aad
van Wijngaarden in the middie of 1967 to become the junior Editor of the ALGOL 68
Report, | came to share a cubicle with him. He looked obviously and outspokenly North
American, wearing a shoelace as a tie, colourtul trousers and jackets and speaking
expiosively in a curious extended subsel of Dutch.

Barry’s responsibilities in the making of the Report were many: He carefully
guarded its style and orthography. aierting us to Webster, Roget’'s Thesaurus and the

AB 48p.3

distinction between skewed &and straight commas. He kept in his head a comprehensive
overview over the whole document as it was updated dally and wholly rewritten every few
months without the benefit of any automatic support for editing. cross-referencing and
formatting. ‘But his main task was to ensure the implementability.

For every aspect of the language. singly and in orthogonal combinations. Barry
would dream up a number of possible implementations. be it syntactic (e.g.” assuring
parseabllity of the two ievel grammar) or semantic (considering the feasibility and
efticiency of various Implementation modeis).

For computer scientists raised in the ALGOL tradition. both Barry and | had an
unusuai experience in real~life FORTRAN programming under early IBM operating
systems. so that we shared a great concern for the transput of the new algorithmic
language.

The mornings we would spend brainstorming. discussing and writing. In the
afternoon, Aad wouid smilingly invite us into his room or even. occasionally, to his
splendid house in Amsteiveen. The three of us (or four, whenever John Peck managed
to join us in person) always carried our annotated copy of the -latest intermediate draft.
Social conversastion was in Dutch. but English was our working language even though
Barry (and John) were fluent enough in the vernacular. ’

Tirrhenia in mid 1968 was my first WG 2.1 meeting. and also the place where |
lost my virginal awe for the great Computer Scientists. The discusslons wére very intense
but often not so deeply technical since the grasp of detall of the Working Group
members was by necessity not so thorough as that of the authors. In the midst of the
melee. Barry served as a bridge between the Senlor Editor and the rest of the Woirking
Group. pouring water on the troubled flames by working day and by drinking night,
integrating each constructive proposal from the Working Group into the fabric of the
Report. In this situation, Barry was at his best: keeping the visionaries and the realists
together.

in the months that followed. the Editors grew even cioser together, working
through stacks of letters from people reacting to MR 93 and jater drafts, many of whom
we later came to know very well, sharing a vision and expressing It in the terse prose
of MR 95. MR 99 and MR 100. living through the meeting in North Berwick and the
Pyrrhic victory for ALGOL 68 in Munich in December 1968, where not even Barry’'s sense
of balance could keeép the ALGOL group together.

in the following years. Barry returned to Canada and concerned himself with
teaching and implementation. The FLACC compiler was one of the results. We were
endlessly embroiled in the Revision of the Report.

For the last 14 years Barry was suffering from a brain tumour. Repeatedly he was
treated and recovered. but his heaith and his pleasure in life were steadily diminishing.
Barry has deserved the rest he has now found. | am proud and thankful to him for the
years we have worked together for ALGOL 68.

C. H. A. Koster

Postscript.

=
Aithough Barry's main contribution to ALGOL 68 was in the originai Report. he did
atso play a substantial role in the Revision. being responsibie for keeping the texts as
they were prepared (this time in machine-readable form) and eventually for their
typesetting.

The Editors of the Revision spent three weeks with him at Edmonton in the
summer of 1974, where many happy hours were spent arguing over such matters as the
correct form for the negative of the subjunctive in English. and the proper fount in which
to represent “nil".

AB 48p.4

After that, he began to take an interest in machine architecture. especially as It
could be realised by microprogramming. and finally, with the advent of X-ray scanners
and their increasingly frequent application to his own head. he embarked upon research
into computerized tomography. As he said, "If you can‘t beat them. ... ",

C. H. Lindsey

AB48.1.2 New_linternational Journal on COMPUTERS & STANDARDS.

Nortn-Holland Publishers (New York and Amsterdam) has launched a new
internationai journai, COMPUTERS & STANDARDS: THE INTERNATIONAL JOURNAL.

Editor-in-Chief will be John Berg. known internationally for his work In this
area.

Mr. Berg has stated that COMPUTERS & STANDARDS wiil provide a long-needed.
independent forum for the vendors. the business community, academia. and the standards
professionals. The journal seeks to provide. on a world-wide basis, fair and equal
treatment for all views consistent with an orderly and constructive discussion of computer
standards issues.

Interested professionals may request a FREE copy of the premlier issue (on official
letterhead) from: Judy Marcure. North-Holland Publishinbg Company, P.O. Box 103. 1000
AC Amsterdam. The Netherlands.

AB48.1.3 Proceedings_of Van Wijngaarden Symposium.

The proceedings of the Symposium held, from Oct. 26-29 1981, to mark the
retirement of Professor A. van Wijngaarden have been published by North Holland
Publishing Company under the title "Algorithmic Languages® (Eds J.W. de Bakker and J.C.
van Viie. A full list of the papers given at the symposium and now published in these
proceedings can be found in AB47.1.1.

AB48.1.4 Numerical Computation and Programming Languages.

The Proceedings of the IFIP TC2 Working Conference on “The Relationship
between Numericai Computation and Programming Languages® (Ed. John K. Reid), heid
at Boulder, Colorado from Aug. 3-7 1981, have been published by North Holland
Publishing Company.

Of particular interest to readers of this Bulletin may be the paper by C.G. van der
Laan (Rijksuniversiteit Groningen) entitied "Programming in ALGOL 68 (as a host) and the
Usage of FORTRAN (program libraries)”. of which the following is the Abstract:

A technique is described whereby a collection of FORTRAN subprograms can be
made available to users of other programming languages. notable ALGOL 68. This
is illustrated with some examples from Forsythe-Malcolm-Moler.

AB 48p.5

AB48.1.5°

Thesis presented by Michel SIMONET - July, 3rd jog) - University of Grenoble

W-GRAMMARS AND FIRST-ORDER LOGIC FOR
THE DEFINITION AND IMPLEMENTATION OF LANGUAGES

Abstract

W-grammars are a powerful tool for the definition of languages. Their gemeral
form cannot reasonably be implemented. Moreover, their expressive power gives
rise to risks of abusive use. A proposition is made to restrict them in a way

which can be implemented in first-order logic.

In the first part, after an introduction to W-grammars, the author presents a
survey of the studies made in this area : by Sintzoff, Hesse, Wegner, Deussen,
Dembinsky, Maluszinsky, as well as formalisms similar toor derived from
W-grammars : attribute systems from Knuth, affix grammars from Koster, Extended
Affix Grammars from Watt, Bracketed two-level grammars from Deussen and conju-
gaticn grammars from Kramer and Schmidt. It is followed by a presentaticu of
first-order logic, the PROLOG language and metamorphosis grammars, and the for-
malism of ramifications [tree-like structures, as defined by Pair] used in the

third part for the definition of RW-grammars.

In the second part, three experiences of implementatiom in PROLOG of languages
defined by a W-grammar are presented. The first one is a transcription in

PROLOG of the W-grammar of ASPLE, A Simple Programming Language, already used .
for comparing methods of definition of languages. The second one is a subset of

Algol 68 and the third one is the grammar of types in a high level language.

In the third part, a new class of W-grammars is defined : RW-grammars, whose
metanotions are ramifications (trees, terms) instead of chains. These RW-grammars
are equivalent to Horn Clauses (clauses of logic having at most one positive
litteral) whose variables take values in domains specified by regular bi-grammars
(grammars for trees). These clauses may be implemented very easily in PROLOG,

and a proposition is made to iBtroduce domains for the variables in this language
in order to increase its expréSsive power as well as to ensure a safer program-

ming.

S o o,

AB 48p.6

AB48.1.6 Book Review : Draft Proposal for the B Programming Language.

by Lambert Meertens.
Mathematical Centre. Postbus 4079, 1009 AB Amsterdam.
ISBN 90 6196 238 2.

‘Price: HFI 11.55.

B is a language designed by Lambert Meertens, with help from Leo Geurts and
further input from Robert Dewar. to be a solution to the following equation:

B : BASIC -= PASCAL : FORTRAN
Its original target was undoubtedly the ecological niche which BASIC seems to have

found for itself in small home and school micros. However, it has now moved a littie
bit upmarket., and describes itself as a “simple language for .use on personal computers®.

it is Intended to be embedded In its own B system (f there happens to be a larger

operating system hiding in the background. that fact should. so far as possible, be
invisibie to the user). The command language of the B system shouid be B itseif. Flles
in the .8 system are just 8 varlables which. being created at the system level. have a
permanent existence. An integral editor will prevent entering anything but correct B
syntax, which will appear in a canonical pretty-printed layout on the screen (which
means. for example. that change of indentation level Is significant in the language.
eliminating the need for begin, end. fi and the like).

Rather than give you a quick rundown of what is in the language itself. | have
obtained permission to reproduce the "Quick Reference® section of the Proposal. and it
appears as the next articie in this Bulletin. | hope you like its style. The rest of the
document is written in a more conventional and formal manner. In the main. this follows
the styie of the Revised ALGOL 68 Report with a 2-level van Wingaarden grammar (but
not incorporating all of the type checking as yeb. However, just as the language Is
simpter. so is its description less formidable. The most difficult part (which | must
confess | have not yel fully understood) is the strong typing which It is claimed (n spite
of the absence of declarations) can mostly be checked at compile time.

The present state of the project is that the language is now defined. but by no
means frozen. Trial implementations are now in order (and prospective impiementers are
welcomed). The experience gained will help to improve the language for its final “official”
definition.

C.H. Lindsey

AB 48p.7

AB48.4.1
QUICK REFERENCE to B, by L.G.L.T. Meertens

Numbers are exact or approximate. You get an exact number even if you use
3.14 or 22/7. You get an approximate number if you use E for the ten
power, or if you use the ~ function (pronounced “about”). For example,
~1000 = E3, and ~0.005 = 0.5E—2. You may also write ~(a+b) etc.
Warning: an approximate number is never equal to an exact number. If you
want to test if you may divide by x, and if you are not very sure that x is ex-
act, it is not safe to use the test x <> 0 (which is shorthand for
(x < 0 OR x > 0)). You should use ~x <> ~0.

If functions like +, —, *, / and ** work on exact numbers, the result is also
computed exactly, except if the exponent n in x*#*n is a fraction. (A formula
like a#x##2+bxx+c stands for what is usually written as ax?+bx+c: your
computer cannot stand dancing lines and requires that you write * whenever
you mean multiplication, even in cases like 2+x.) Arithmetic on approximate
numbers gives approximate results (which, for many purposes, are precise
enough, and often are computed much faster). Functions like roor, sin and
log always give an approximate result. (So root 4 <> 2 and log I <> 0).
More details are given at the functions below.

Texts consist of characters and are written like ‘Jack and Jill’ or
"Jack and Jill". (The characters meant are not Jack and Jill, but the “J,
“a”, etc. You may use any printing character and the space.) Which of the
forms you use, the one with single quotes or the one with double quotes,
makes no difference to your computer. Never confuse the number 747 with
the text ‘747’. Whereas 747 = 3x249, ‘747’ is quite another text than the
text ‘3x249’, and '3'x'249’ is not even a text; to your computer it is mean-
ingless. The number 747 can be used to do arithmetic; to your computer it
does not consist of characters and it is written that way only because the
dominant earthian species has twice five wriggly appendices sprouting from
its upper tentacles and finds this clumsy notation convenient, and because
you are (presumably) a member of that species and your computer tries to
please you. The text ‘747’, on the other hand, cannot be used in arithmetic,
and if you nevertheless try to do so, your computer will warn you. It really
is three characters in a row. The so-called quotes on the outside do not real-
ly count. They only serve to make clear where the text begins and ends. If
you say prayers, it does not mean that you say “prayers”. But if you say
“prayers”, you don’t say the quotes, do you? You can find out the length of
a text with the function #. For example, # ‘toe’ = 3. If you use ' before
and after your text, you can only use it inside if you double it thus: *’. Your
computer knows that you really mean it only once: #’p’’q’ = 3. The rules
for ” are similar. ;

But if you use the other quote sign inside than the one you use on the out-
side, you should not double it. So write either: 'He said: "don’'t!"’ or:
”He said‘. ”IIdOn ’t!”””.

AB 48p.8

Inside texts, you can use weirdos (which are known as conversions) of the
form ‘e’. Your computer computes the value and replaces the conversion by
a suitable text. For example, if i=239 and ;= 4649, then
it w = Cist = ‘239 % 4649 = 1111111°. Within the conversions the
need to double the outside quotes inside has disappeared: "“# ‘roe””’ = '3’.
(Don’t look too long at it if you don’t want to strain your eyes.) On the other
hand, if you use a single * as character in a text, you have to double it.

You can join two texts thus: 'now’"‘here’ = 'nowhere’, and you can repeat a
text as many times as you want: ‘ox”""3 = ‘ox"'ox"‘ox’ = ‘oxoxox’ (just
like x**3 = x*x#*x). You can take texts apart thus: "lamplight'@4 = 'plight’
(since the “p” is the fourth character) and 'scarface’|5 = ‘scarf".

You may combine @ and |: ‘Benedictine’@4|5 = ’edictine’|5 = ‘edict’, and
'Benedictine’|8@4 = 'Benedict'@4 = ‘edict’.

Forms with @ and | may be used as targets:

if ¢ has as content ‘Benedictine’, and you tell your computer to

PUT 'zedr’ IN t@4|5
it puts 'Benzedrine’ in t; if ¢ is ‘participle’ and you tell your computer to
PUT "' IN t|8@7
it puts ‘particle’ in t; and if t is ‘creation’ and you tell your computer to
PUT 'm’ IN t@4|0
or to
PUT 'm’ IN t|3@4
it puts ‘cremation’ in t.
Compounds are a bunch of values grouped together. For example, if you
want to keep track of which books you have lent when to whom of your
friends, you may tell your computer to
PUT 'N&P’, 'Mote’ IN book
PUT 84, 3, 17 IN date
INSERT book, date, 'bearded gnome’ IN books'lent
and your computer inserts (('N&P', ‘Mote’), (84, 3, 17), 'bearded gnome’) in
the list of lent books it keeps for you. (Better ask him his name next time,
though.)

You can obtain the fields (as they are called) by putting the compound in a
compound target. In the example, your computer would obey

AB 48p.9
PUT book IN author, title

by putting ‘N&P’ in author and 'Mote’ in title.
The following is a neat trick to swap the contents of two targets:

PUT a, bIN D, a

This tells the computer to make the compound (g, b) and to decompose it
into (b, a).

Lists are like lists you make to do shopping: if you and a friend of yours
each make a list, and your list is

tooth paste

shampoo

cucumbers

yoghurt

muffins

birthday present for linda

and your friend has

birthday present for linda
shampoo

tooth paste

muffins

cucumbers

yoghurt

and you compare lists, you will exclaim: why, we have exactly the same list.
Similarly, your computer considers {t; s; ¢; y; m; b} and (b; s; &; m; ¢; y} as
the same list. In fact, it always sorts the entries in a list from low to high; if
you tell your computer to

PUT (5 7: 3 2)INa
INSERT 4 IN a
WRITE a

you will see {2; 3; 4 5; 7} written. The same entry may occur several times
in a list. If you tell your computer to

PR g“ﬁ

AB 48p.10

PUT {} IN letters
FOR c IN ’mississippi’:
INSERT c IN letters

WRITE letters
it writes back (i’ ‘i’ ‘i% i’y 'm’ p% ph s’ s’y s s’}
You may insert all kinds of values in a list, but for each list they must all be
the same type of value (all numbers, or all texts, etc.). You may use {I..n} as
shorthand for {I; 2; ... ; n—1; n} and similarly {‘a".’z’}.

Tables are somewhat like dictionaries. A short English-Dutch dictionary (not
sufficient to maintain a conversation) might be

aardvark: aardvarken
apartheid: apartheid
furlough: verlof

of: van

or: of.

van: bestelwagen
yacht: jacht

Table entries, like entries in a dictionary, consist of two parts. The first part
is called the key, and the second the associate. All keys must be the same
type of value, and similarly for associates. A table may be written thus:
(['rj: L [rvy: s ['x’y: 10}.

If this table has been put in a target roman, then roman['X’] = 10.

Your computer keeps the tables sorted by key. If you next tell your comput-
er to

PUT 100 IN roman['C’]

then roman will contain {[’C’J: 100; ['I']: I; ['V']: 5; ['X’]: 10}. You can
find out what the keys are with the function keys; in the example,
keys roman = {'C’; 'I'; 'V’ 'X'}.

PREDEFINED COMMANDS

HOW'TO c: commands
tells your computer how to execute your command c. It must not be used in-
side other commands.

YIELD f: commands
tells your computer what value it must yield for your formula f when it is
computed. It must not be used inside other commands.

AB 48p.11

TEST p: commands
tells your computer whether your proposition p should succeed or fail when it
is tested. It must not be used inside other commands.

CHECK test
checks if the test succeeds, in which case nothing happens, but aborts if the
test fails. ,

WRITE e

writes the value of € on the screen. It gives new lines for any /-signs before
and after e.

READtEGe

asks an expression from you to put in t. The e tells your computer what type
of expression to ask for (number, text, etc.).

PUTeINt
puts the value of e in t.

DRAW t
draws a random number (from ~0 up to ~1) and puts it in t.

CHOOSE t FROM 1
chooses at random an element from the text, list or table 1 and puts it in t.
(The element is not removed from 1.)

SET'RANDOM e
sets the random generator, using the value of e.

REMOVE e FROM 1
removes the value of e from the list held in 1. The value must occur in that
list. It is removed only once.

INSERTeIN1
inserts the value of e in the list held in 1.

DELETE t
deletes the target t. This is used mostly to delete entries from tables or to kill
permanent targets.

AB 48p.12

QuIT
quits from a HOW'TO or refinement.

RETURN ¢
returns the value of e from a YIELD or refinement for further computation.

REPORT test
reports from a TEST or refinement whether the test succeeds or fails.

SUCCEED
reports success from a TEST or refinement.

FAIL
reports failure from a TEST or refinement.

IF test: commands
executes the commands if the test succeeds.

SELECT:
test: commands

test: commands
selects the first test to succeed and executes the commands after that test. At
least one test must succeed. To'make sure, the last test may be ELSE, which
catches if all other tests fail.

WHILE test: commands

executes the commands if the test succeeds, and keeps repeating this while
the test keeps succeeding. If it fails the very first time around, the commands
are not executed at all.

FOR t IN e: commands
executes the commands for t ranging over the successive characters of e if ¢ is
a text, entries of e if e is a list, and associates of e if e is a table.

ALLOW t
allows the use of the permanent t inside a HOW'TO-, YIELD- or
TEST-body. It must occur there at the head.

AB 48p.13
PREDEFINED FUNCTIONS AND PREDICATES

Functions on numbers

~X
returns an approximate number, as close as possible in arithmetic magnitude
to x.

x+y
returns the sum of x and y. The result is exact if both operands are exact.

+x
returns the value of x.

x=y
returns the difference of x and y. The result is exact if both operands are ex-
act.

-
returns minus the value of x. The result is exact if the operand is exact.

X*y
returns the product of x and y. The result is exact if both operands are ex-
act.

x/y
returns the quotient of x and y. The value of y must not be zero G.e.,
~y <> ~0). The result is exact if both operands are exact.

xawy

returns x to the power y. The result is exact if x is exact and y is an integer.
If x is negative (i.e, ~x < ~0), y must be an integer or an exact number with
an odd denominator. If x is zero, y must not be negative. If y is zero, the
result is one (exact or approximate).

n root x
returns the same as xxx(1/n).

root x
returns the same as 2 root x.

~

abs x
returns the absolute value of x. The result is exact if the operand is exact.

AB 48p.l14

sign x
returns an exact number from {—/..+1} with the same sign as x (where, e.g,,
sign ~0 = sign —~0 = 0).

floor x
returns the largest integer not exceeding x in arithmetic magnitude (so, even
if perhaps 3 > ~3, floor ~3 still returns 3).

ceiling x
returns the same as — floor —x.

n round x

returns the same as (/Ow* —n)xfloor(x«10#sn+.5). For example 4 round pi =
3.1416. The value of n must be an integer. It may be negative:
(—2) round 666 = 700.

round x
returns the same as 0 round x.

amodn
returns the same as a—n=floor(a/n). (Both operands may be approximate,
and n may be negative, but not zero.)

/%x :
returns the smallest positive integer g such that g*x is aninteger. The value

of x must be an exact number.

*/Xx
returns the same integer as (/*x)*x. So, if x is exact, x = (*/x)/(/*x).

pi
returns approximately 3.1415926535... .

sin x
returns an approximate number by applying the sine function to x.

cos x
returns an approximate number by applying the cosine function to x.

an x
returns the same as (sin x) / (cos x).

AB 48p.15

X atan y
returns an approximate number phi, in the range from (about) —pi to +pi,

such that x is approximated by r # cos phi and y by r * sin phi, where r =

root(x*x+y=y). The operands must not both be zero.

atan x
returns the same as / atan x.

e
returns approximately 2.7182818284... .

exp x
returns approximately the same as ex*x.

log x
returns an approximate number by applying the natural logarithm function
(with base e) to x. The value of x must be positive.

b log x
returns the same as (log x) / (log b).

(There should also be a collection of simple matrix functions.)
Functions on texts

t"u
returns the text consisting of ¢ and u joined. For example, ‘now " ‘here’ =
‘nowhere’.

"n
returns the text consisting of n copies of ¢ joined together. For example,
‘Fi! "**3 = 'Fi! Fi! Fi! '. The value of n must be an integer that is not nega-
tive.

x<<n
converts x to a text (see 5.1.2.2.b) and adds space characters to the right until
the length is n. For example, 123<<6 = ‘I23 ’. In no case is the text

truncated; if n is too small, the likely effect is that your beautiful lay out is
spoiled. The value of n must be an integer.

x><n
converts x to a text and adds space characters to the right and to the left, in
turn, until the length is n. For example, /123><6 = ' 123 '. In no case is

the text truncated. The value of n must be an integer.

AB 48p.16

x>>n

converts x to a text and adds space characters to the left until the length is n.
For example, 123>>6 = ' 123’. In no case is the text truncated. The
value of n must be an integer.

Functions and predicates on texts, lists and tables

keys t
requires a table as operand, and returns a list of all keys in the table. For ex-
ample, keys {([1]: 1; [4]: 2; [9]: 3} = {L; 4 9).

#t

accepts texts, lists and tables. For a text operand, its length is returned, and
for a list or table operand, the number of entries is returned (where dupli-
cates in lists are counted).

e#t

accepts texts, lists and tables for the right operand.

For a text operand, the first operand must be a character, and the number of
times the character occurs in the text is returned. For example,
"I’ # ‘mississippi’ = 4.

For a list operand, the number of entries is returned that is equal to the first
operand (which must have the same type as the list entries.) For example,
3# (13 34)=2

For a table operand, the number of associates is returned that is equal to the
first operand (which must have the same type as the associates in the table.)
For example, 3 # {[1]: 3; [2]: 4, [3]: 3} = 2.

eint :
accepts texts, lists and tables for the right operand. It succeeds if e#7 > 0
succeeds.

e not'int
is the same as (NOT e in t).

min t

accepts texts, lists and tables. For a text operand, its smallest (in the ASCII
order) character is returned, for a list operand, its smallest entry is returned,
and for a table operand, its smallest associate is returned. For example,
min ‘syrupy’ = 'p’, min {I; 3; 3; 4} = 1, and min {[1]: 3; [2]: 4 [3]: 3} = 3.
The text, list or table must not be empty.

AB 48p.17
e mint

accepts texts, lists and tables for the right operand.

For a text operand, the first operand must be a character, and the smallest

character in the text exceeding that character is returned. For example,

‘i’ min 'mississippi’ = 'm’.

For a list operand, the smallest entry is returned exceeding the first operand

(which must have the same type as the list entries.) For example, 3 min {1, 3;

34 =4

For a table operand, the smallest associate is returned exceeding the first
and (which must have the same type as the associates in the table.) For

example, 3 min {[1]: 3; [2]: 4; [3]: 3} = 4.

There must be a character, list entry or table associate exceeding the first

operand.

max t and e max t

are like min, except that they return the largest element, and in the dyadic
case the largest element that is less than the first operand. For example,
'm’ max 'mississippi’ = 'i’.

n th'of t

requires an integer in {/..#1¢} for the left operand, and accepts texts, lists and
tables for the right operand. It returns the n'th character, list entry or associ-
ate. In fact, n th'of t, for a text ¢, is written as easily /@n|/. For a table, it is
the same as #/n th'of (keys t)], which is something different from ¢/n], unless,
of course, keys t = {1..#t}. For alist, 1 th'of t is min t.

AB 48p.18
AB48.4.2 Modular Compilation Systems for

High Level Programming Languages

by I.F. Currie and N.E. Peeling
(Royal Signals and Radar Establishment, Malvern)

Introduction

This paper will try to draw some conclusions from the experience gained by
the different implementations of modular compilation in Algol 68. This
does not mean that it is written only for the Algol 68 community. It is
also produced for those working on nev high level languages, notably Ada,
in the hope that they may avoid some of the problems that have befallen the
implementors of Algol 68.

The proposed standard for Ada [1] seems to indicate that many of the
lessons painfully learnt by Algol 68 implementors have not been passed on
to the designers of Ada. Although one of the design goals of Ada was that
the language should offer "support for separate compilation of program
units in a way that provides the same degree of checking as within the
unit", the proposed standard describes a system for modular compilation
that is more dangerous than any such system that has been implemented in
Algol 68.

What is modular compilation?

A modular compilation system allows a large program to be subdivided into a
number of smaller modules which can be submitted for compilation
separately.

By making the separate modules as self-contained as possible they can be
used in the production of more than just the one program. To this end each
module has a specification which defines which parts are visible outside
itself. This allows the possible interactions between modules to be
checked. The specification defines -a module to the outside world so that a
module can be altered and recompiled without affecting any other modules
provided that its specification remains the same. It can be seen that if a
separate compilation system admits a natural subdivision of a programaing
task it will provide a useful means of dividing a large problem into
manageable sized portions as well as minimising the amount-of recompilation
necessary during development.

What is a natural subdivision of a programming task?

Programming is often described in terms of the "top down" and the "bottom
up" approaches. The top down approach starts with a high level description
that breaks the problem down into a number of steps which are only
specified in general terms. Each of these steps is then tackled in a
similar manner by breaking it down into even smaller steps. At each level
more detail is introduced until a complete solution has been generated.

The bottom up approach starts by defining the lowest level of primitives
first (for example defining the data structures and basic procedures for
manipulating them). These primitives are then used to produce a more
powerful set of facilties which can then in turn produce yet more powerful
ones until the problem can be easily solved using the facilities that have
been built up. The building of a subroutine library is a naturally bottom
up activity with each new level producing routines of greater
sophistication but less wide ranging applicability.

AB 48p.19

The top down approach tends to be used to solve a specific problem whilias
the bottom up approach is particularly suited to the provision of a set of
utilities that can be used selectively to help solve a wide range of
problems.

Modular compilation systems need to provide two different types of module
to cater for the top down and the bottom up approaches. All separate
compilation systems produced for Algol 68 have cztered for the bottom up
approach (after all this is the sort of facility offered by most FORTRAN
compilers), but only a few have provided a type of module suitable for top
down usage. In real life, a problem will tend to be solved by a mixture of
the two approaches, so where two different types of module are provided it
is usually possible to combine them in a natural nanner.

Some systems draw a distinetion between modules and compilation units
because the visibility rules for modules do not have to be linked to a
particular compilation mechznism. For the sake of simplicity we will treat
them as one and the same.

We will only be considering bottom up modularisation because it is the more
important of the two types.

In its simplest form bottom up programming provides the facility to
separately compile some (possibly restricted) piece of program, to which
has been added a means of publishing identifiers declared in it for use by
other modules or programs ("keep" and "pub" constructions have been used
for this purpose). Kept identifiers are made available to other modules or
programs if a simple directive is included in their text (Ywith", "use" and
maecess" have all been used for this sort of construction).

Simple procedure modules

The simplest and safest piece of program allowed as the unit of separate
compilation is a single procedure declaration (we will refer to these as
simple procedure modules). Simple procedure modules correspond to the
units of separate compilation in most FORTRAN systems. Large libraries
have been written in FORTRAN so it is reasonable to ask why high level
languages such as Algol 68 and Ada need a different type of module. The
answer is that if Ada and Algol 68 are satisfied just to copy the
facilities that can be provided by FORTRAN libraries then there is no
reason why simple procedure modules should not suffice. Writers of Algol 68
and Ada can however make great use of the data structuring provided by
such languages and may well wish to declare and initialise data structures
and make them available in the library.

A separate compilation system based on simple procedure modules has been
implemented in Algol 68 (the CDC system). It provides a little more than
this by having a single module (called a prelude) in which objects other
than procedures can be declared and initialised. The prelude is
automatically obeyed before all programs that use the library. The CDC
system does present certain practical problems. If data space is to be
created by the library it can only be generated locally in a procedure, or
locally in the prelude which is then global to all users of the library, or

AB 48p.20

by using a global generator which will use the heap with its associated
overheads. The CDC systems can also give rise to very large preludes for
very large libraries. For these reasons the simple procedure modules are
unpopular with the producers of large libraries (eg the NAG library).

Procedures in Algol 68 (and their equivalents in Ada) are restricted in
that they cannot be produced dynamically (in particular a procedure cannot
produce a new meaningful procedure as its result). This restriction is
imposed to allow efficient "stack based"” implementations of the languages.
If this restriction is removed, procedures become increasingly attractive
a8 the basic unit for separate compilation. A module could most naturally
be treated as a procedure delivering keeps as its result (hopefully using a
nice structuring facility that allows easy access to the different

fields). The module's parameters would either be procedures (unevaluated
modules) or keeps {evaluated modules). This approach is still not a
complete solution because you cannot say "only evaluate this module if it
has not been évaluated by some previous module". It is because modular
compilation systems are trying to get the effect of dynamically producegd
procedures, without abandoning "stack based" implementations, that leads to
all the complexities that are assumed to be inherent in separate
compilation systems.

Modules requiring elaboration

Simple procedure modules consist of compiled code that is obeyed whenever
the procedure is called. If separately compiled modules do more than just
declare procedures, for example declare variables, the module may also
contain code that is obeyed before the using program (the obeying of this
code is referred to as the elaboration of the module). If more than cne
such module is being used, it becomes necessary to know if the order of
elaboration of the modules is important. It may also be important to know
how many times each module is elaborated. '

An obvious extension to the simple procedure module is to make the umit of
compilation as unrestricted as possible. To this end many systems allow
any legal sequence of statements-(with some expression of the module's
external specification) to be compiled separately. This is the only unit
of separate compilation in. Algol 68-R [2], it is one of the units in the
proposed standard for Algol 68 [3], and it is also one of the units in the
proposed standard for Ada.

This is obviously a much more flexible unit than the procedure
declaration. Unlike the procedure declaration these modules may require
elaboration and a simple example will suffice to show that the order of
this elaboration may have to be known if the result is not to be
ambiguous.

In our examples modules will be headed by the word module followed by the
name of the module. An (optional) use list of module names may be included
after the module name; this use list will provide access to all the
identifiers published by the modules named in it and will also cause their
elaboration if required. The modules may publish identifiers in a keep
list at the foot of the text.

AB 48p.21

MODULE aa =
(INT i := 1)
KEEP 1

MODULE bb USE aa =
: Coeunay 1 2= 1415 ..00)
KEEP

MODULE cc USE aa =
(eoee; 1 3225 o0ed)
KEEP

This example shows that there is an obvious partial order within a library
of modules because module aa must be compiled before either bb or cc. It
is thus easy to say that aa must be elaborated first, but any program that
uses both bb 2nd cc must know the order of their elaboration. For example,
if the order of elaboration is aa, bb, cc the variable i refers to 2, but
if the order of elaboration had been aa, cc, bb the variable i wculd have
refered to 3.

We have so far assumed that there was only one elaboration of each module
so that there was only the one copy of the variable i, which allowed the
modules to communicate via the common reference. If any module that used i
had its own copy (ie a module is elaborated as many times as it is used)
such communication would have been impossible. It should be obvious that

 the number of copies of each module will affect any decisions made to
define the nature of any communication between modules using common
references (communication during the elaboration is often referred to as a
side-effect). 1s such communication a defect or a facility? It is easy to
construct examples where you want communication and equally easy to
‘construct examples where you do not (consider a module that defines a
procedure that produces elements of a pseudo-random sequence - do you want
modules to use the same random sequence, or do they each require their
own?). - :

No one has managed to devise a system that allows the user to choose as
many copies as required, which would -be the best solution to the problem.
If a copy of a module is taken every time it is used, the implementation is
1iable to become slow and use a lot of space. For this reason most systems
take as few copies as is possible given the information known at compile
time, usually just a single copy of each module. Because the proposed
standard for Algol 68 allows the use of its access clauses within the body
of the module text rather than the more usual approach of having a use list
at the top of the module, it is not always possible to determine at compile
time if a copy of a module already exists; in such cases a separate copy
must be taken which can cause the most appalling confusions {(a good reason
for keeping the use list at the top of the module).

Comparison of the different systems
Given that a decision has been made to permit only one copy of each module,

what can be done about the possibility of communication between modules
using common references. ' :

AB 48p.22

¥We will examine the relative advantages and disadvantages of the Algol 68-R
system, the proposed standard for Algol 68, the modules system for the
RS Algol 68 compiler [l#] and the proposed standard for Ada.

The Algol 68-R system is somewhat of an anachronism because it was the
production of this system that showed up many of these problems in the
first place. It is still worth examining because it has probably been more
heavily used than any other system and the problems users have had with it
were an important factor in the production of the RS module system.

The Algol 68-R module system

Algol 68-R modules can only be used if they are incorporated in a library
(called an album), and -they are date stamped when they are put into the
library. The date stamping gives a total ordering within the library.

when a program is run that uses modules from the library, the total set of
modules required is obtained and they are elaborated once only in order of
their date stamps (oldest first). It is obvious that if this system i3
used to build up a library from scratch it will, of necessity, obey the -
partial order. If however a module is changed we must decide if any
modules that use it must be recompiled. We have already said that a module
can be changed without affecting any other modules provided that its
external specification remains unaltered. We will now consider what
constitutes the specification of an Algol 68-R module. To allow the
complete interface checking that will be necessary to implement a safe
system it follows that if the contents of the keep list are changed (or the
modes of the elements in it) then any module that uses any of the
jdentifiers that have changed must be recompiled. For efficiency reasons
it is usual to specify that any change in the keep list of a module will
require the recompilation of all modules that use it. This means that an
exact description of the keep list is part of the external specification of
a module. Regrettably this is not sufficient for the external
specification in Algol 68-R; the use list must also be included. The
necessity of including the use list will be demonstrated by an example.

Consider compiling the following modules in the given order:
MODULE aaa =

MODULE bbb USE aaa =

MODULE ccc USE bbb =

If we recompile aaa and change its keep list we change its specification.
The old version of module aaa has to be removed from the library before
being replaced by the new. Module aaa now has a new date stamp. We have
to recompile bbb because it uses aaa but can we amend it (amending means
that the specification of the new module is the same as the old version so
that the code referred to by the module bbb can be replaced by the new code
and no zodule that uses bbb will have to be recompiled)? The answer is no
because the partial order tells us that we must elaborate aaa then bbb,
while unfortunately the date stamping tells us to elaborate bbb before aaa,
which is nonsense, and so we have to remove bbb from the library and then

AB 48p.23

put it in again with a new date stamp. This means that the use list of. bbb
complete with date stamps has formed part of the external specification.
The module ccc must also be recompiled because bbb has a more recent date
stamp. The result of adding the use list to the specification means that
all modules that use aaa must be recompiled plus all the modules that use
the recompiled modules no matter how indirectly. It will come as no .
surprise to know that the users of the Algol 68-R system have to rebuild
their libraries quite frequently.

The Algol 68-R system imposes an external total ordering on the modules and
all the recompilation problems arise because the total ordering can at
times seriously contradict the necessary partial order. If a total
ordering could be found that did not allow these gross anomalies with the
partial order the system could probably allow a more liberal regime for
amending a module.

The external total ordering does have some advantages over the proposed
standard for Algol 68 which uses the syntax of the use list to give the
total ordering. We will see that in the proposed standard for Algol 68 any
changes in the order of the use list can alter the tctal ordering while in
Algol 68-R this does not happen. This does not mean that the external
total ordering totally freezes the side-effects as we will now

demonstrate.

Consider a module

MCDULE aaaa = .
(INT i := 1)
KEEP i

Imagine one person compiles a module bbbb that uses the fact that i is
initialised to 1.

MODULE bbbb USE aaaa =
(oooe; INT § 2=z 45 ...0)
KEEP

Then imagine another person compiles a modules cccec that alters i

MODULE cccc USE aaaa

eeesy 1

=2;)
KEEP

If the external total order is aaaa, cccc, bbbb then any module (or
program) that uses just bbbb will get the effect that the author of bbbb
intended but if both bbbb and cccc are used it is likely that bbbb will not
have the effect the author intended because j will refer to 2 after its
assignment instead of referring to 1 as the author expected. It seems
likely that the author of bbbb will feel he is being punished for the sins
of the author of cccc. ‘

The NAG Algol 68 library has been implemented in Algol 68-R and the only
serious complaint is that the library is not tolerant of changes and so
needs rebuilding too often. Experience with more naive users has shown
that unexpected side effects are also a serious problem.

AB 48p.24
The proposed standard for Algol 68

The modules required are elaborated by a recursive procedure working from
left to right in the use lists. If a module in a use list itself has a use
1ist then the recursive procedure calls itself on this new use list. If a
module has no use list or its use list has been exhausted it will be
elaborated (provided that a copy is not known to exist).

This has the effect that all the use lists must be known if the total order
is to be determined and that altering the order of a use list can sometimes
alter the total order. Unexpected side-effects can only be avoided by
knowledge, self-discipline or luck.

This system has nct yet been implemented, so feed-back from users is
unavailsble. In the authors' opinion it is overly complex, possesses an
unlovable syntax and is much too difficult for anyone who is not an Algol 68
lawyer to understand. It is however better than the proposed Ada system
because given the complete text of all the modules involved all side-effects
can be defined.

The modular compilation system on the RS Algol 68 compiler

The RS module system wished to avoid the shortcomings of simple procedure
modul es- but without then encountering the problems with side effects that
have beset other systems. It was decided to extend simple procedure
modules so that any declarations could be made in a module (for this reason
they are.called DECS modules). It was also found that other statements
could be included without danger of side-effects. A DECS module can be any
sequence of legal steps provided that two restrictions are enforced at
compile-time. Firstly, the outer level of a module must not use any
reference kept in another module. Since procedures are just code that is
obeyed whenever they are called it possible to make a routine text free of
restrictions if a second restriction, that procedures kept in other modules
are not called at the outer level, is imposed. It is essential that
routine texts be free of any restrictions so that procedures called by
programs that use the modules can communicate via non-locals that are also
kept in the modules. These restrictions are sufficient to prevent any
side-effects during elaboration, but unfortunately they prohibit the
writing of some perfectly safe constructions. For example a procedure that
does not alter any kept reference cannot be called in the outer level of
another module even though it cannot cause a side-effect.

The designers of the module system of the RS Algol 68 compiler felt that
communication during elaboration is so confusing that it is unreasonable to
expect users to have to learn enough about the problem to be sure of always
avoiding it, or to know enough about the module system to use the
communication safely. The aim was to get the same effect (on
communication) as multiple copying of modules but without the attendant
overheads.

Two RS Algol 68 systems are already in use and so far the compile-time
restrictions have not been found unduly difficult to work within.

AB 48p.25
The proposed standard for Ada

Ada allows the separate compilation of a number of different compilation
units. These include simple procedure modules (subprograms in Ada
parlance) and unresiricted pieces of program (packages).

Ada only allows for one copy of each mocule and definitely regards
communication during elaboration as a defect because the proposed standard
says ([1], section 10.5) that if the order of elaboration is important then
the program is erroneous, which means ({1], section 1.6) that if the
program is executed then its results are ambiguous. This is a totally
unsatisfactory solution to the problem because it will be very difficult to
check if a program is erroneous. The authors feel that such ambiguities
can best be avoided by compile-time restrictions, or failing that, the
algorithm for the elaborgtion should be given.

The authors did not find this mechanism particularly easy to understand.

Conclusions

The authors' opinions of the relative merits of the various modular
compilation systems have already been given. We would however like to add
one more general comment. If, for efficency reasons, only one copy of each
module is allowed then we feel that a minimal set of restrictions should be
applied to get the same effect (on communication) as multiple copies. The
restrictions in RS modules are one such set. The inability to call
procedures in modules because there is no way of telling if they alter
references non-locally is however quite a serious restriction. If a
language contained a separate construct to describe a procedure that cannot
alter non-locals then this sort of function could be called at the
outermost level of a module. It is also possible that such a function
could be made completely free of side-effects by prohibiting the use of
reference parameters. A "side-effect free" function has a lot to be said
for it in its own right because it would accurately reflect the
mathematical idea of a function transforming one set of values into another
set.

Acknowledgments

The authors would like to thank Miss Susan Bond, Dr J.M.Foster and Dr
D.P.Jenkins for all their advice and help.

AB 48p.26

References

[1] Reference Manual for the Ada Programming Language - Proposed Standard
Document. United States Department of Defense, (1980).

[2] Woodward,P.M. and Bond,S.G., "Algol 68-R Users Guide". Her Majesty's
Stationery Office, (1975).

{3] Lindsey,C.B. and Boom,H.J., A Modules and Separate Compilation
Facility for Algol 68, Algol Bulletin, 43, (1978).

{4] Bond,S.G. and Woodward,P.M., Introduction to the 'RS' poriable
compiler, RRE Technical Note, 802, (1977).

AB 48p.27

AB48.4.3
The NAG ALGOL 68 Library

by G.S. Hodgson (NAG Central Office. Oxford)
1. Numerical Algorithms Group (NAG)

The Numerical Algorithms Group (NAG) has been in existence as a co—-operative
inter—university venture since 1970.

ts aim Is to assist users of University computers by the development of a
balanced general-purpose numerical library, which is well documented and validated.
Each "contributor® to the Library Is assigned a specific area of Numerical Analysis In
which he has responsibility for the selection, collection, coliation, testing and
documentation of suitable routines. Test programs are aiso provided by the appropriate
contributor. All software is retested by a person other than the contributor. NAG provides
a Library Service by the provision and support of the compiled version of the NAG
Library and its accompanying documentation. A copy of the source text of the Library is
also avallable for Inspection at each installation.

The original versions of the Library are available in Algol 60 and in FORTRAN. In
1973 it was decided to proceed with an Algol 68 version. and this version has also been
produced as a co~operative effort between a number of University and Research centres
poth in this country and in the Netherlands.

2. implementations

The Algol 68 Library has been “implemented” on several different ranges of
computers. The table below lists the Implementations currently available and those in
progress.

COMPUTER SYSTEM COMPILER LIBRARY MARK COMMENTS
NOW NEXT DUE

CDC 7600/CYBER cDC 2 3 -

IBM 360/370/AMDAHL FLACC 2 3 - No Library Mechanism

ICL 1900* 68R 3 4 - NON - 1906A/S

ICL 1906A/S 68R 3 4 -

ICL 2900(B) 68RS - 3 DEC 82 VME/B

TELEFUNKEN TR440 68C 2 3 -

In order to make the NAG Library available on the ditferent compilers. it has been
necessary to restrict the features of Algol 68 which are used. The major restrictions are
summarised below:

a) Detining occurrences of identifiers. operators and mode Indications must precede
. their applied occurrences.

b) Avoid heap generators.

c) No flexible arrays (the mode STRING is a flexible array).

@ Avoid unions.

) No fields of a structure may be of mode ROW (reference to ROW is allowed).
f The mode ROW of ROW is not allowed.

') The symbol GOTO may not be omitted in jumps.

h) A mode indication may not be the same as any operator.

i) No parallel clauses or semaphores.

P No vacuums.

K Use only "worthy® characters in operator tokens.

AB 48p.28

The restriction on heap generators has been relaxed so that array generating
packages such as Torrix can be included. However, we have been careful only to include
heap generators in a very restricted number of array generating procedures. A distinction
has been made in the use of such procedures, that is:

a) use of the heap In a stack orlented manner (level 1),
and
b) use of the heap with a garbage collector (level 2).

In this way, we believe that it may be possible to provide level 'I' facilities on a
compliing system which does not provide a bulit in garbage collector.

No use has been made of unions at Mark 3, although it is intended to use unions
in some procedure specifications at Mark 4. This use will be restricted only to the formal
parameters of a limited number of routines which are directly called by the user. It is
not Intended to manipulate unions within the bodies of routines.

With these restrictions it has been possible to translate between dialects in an
automated manner. with one exception. it is sometimes necessary to make very limited
use of machine coding. For efficiency. it is desirable to be able to plant “infine" code.
The way this is done varies between the different compilers. The CDC compller provides
the most flexible system - inline operators can be defined: in 68R the code sections
have to be included explicitly; in 68RS some inline operators are provided but new ones
cannot be defined. Hence some tailoring of the source code is necessary.

Each new implementation requires the running of test programs and the checking
of their results — about 3 man months work. But there is a further and more serious
delay in Introducing further implementations. Dialect conversion Is automatic. but it has
not been found possible to automate the conversions necessary because of the diverse
liprary mechanisms.

The existing mechanisms are incompatible:
a) cDC - a top down mechanism defining a prelude with automatic inclusion of

precompiled NAG routines at each applied occurrence. There is no
protection between items within the prelude.

b) FLACC - no library mechanism is currently available. the operating system has
to be extended to provide primitive source text inclusion of NAG
routines.))

c) 68R - a bottom up mechanism with protection of modules from one another

and from the particular program.

[+)] 68RS - both a top down and bottom up mechanism, however the bottom up
mechanism has restrictions to exclude modules with side eftects. This
excludes a very limited number of NAG facilities.

e) 68C - a combination of top down and bottom up facllities. However the bottom
up facilities are very primitive and the user is responsible for including
a dummy specification for each library routine used in the particular
program.

With these diverse mechanisms, which ail differ trom the standard mechanism
rccormmended by Lindsey & Boom [AB 43.pp 19-53). further restrictions are required to
make it possible lo adapt (though not by automatic means) the library source code to
the dilferent mechanisms. We summarise the major restrictions:

1y Definition Modules must be side-etfect free. That is:

AB 48p.29
a) No procedures or user~defined operators may be called. except within
routine texts.
b) No labels may be declared In the outermost level.
c) No public item which is a reference (or a structure, array Or union

containing a reference) may be used in a definition module other than
the one in which it was declared. except within a routine text.

With such restrictions, the order of invocation of such definition modules is
irrelevant to the user.

2) All ACCESSing of modules must be suitable for accessing in the form:
ACCESS A ACCESS B

This means that clashes of identifiers will be resolved in a range structured
manner - the identifiers PUBlished in B will take precedence over those of A.
Contributors must therefore take care that items are not publicly declared twice
(possibly with different specifications) without good cause. since no_check can be
made that an unfortunate order of accessing of modules does not result in a
change of indentification (and hence meaning). of such items.

3) All accessing of moduies must be done at the head of a definition module.

This ensures that only one invocation of a module can occur: a contributor is not
allowed to generate multiple invocations by for example ACCESSing a module
within a routine text (see Lindsey and Boom AB 43 pp. 22. 23).

4) The standard mechanism only permits PUBlic ACCESSing of a module to publish
all the PUBIlicly deciared items - selective publications using the keeplist
mechanism of 68R and 68RS is not allowed. .

5) All objects defined at the outermost level of a module (i.e. not local to a routine
text) must follow standard NAG naming conventions to avoid conflicting names (all
such objects are compiled together in the CDC prelude).

. These restrictions only make it possible to adapt the library source code for the
different mechanisms, the syntactical form of the library required for the different
mechanisms varies considerably. Hence three different source versions of the NAG
Library exist -~ CDC, 68R and 68RS. Other implementations have to be begun from
whichever of these impilementations provides the closest starting point.

3. Scope_of the Library

The Mark 3 Algol 68 Library provides. with very limited exceptions, facilities
equivaient to those of the Mark 5 FORTRAN Library, with additional material in some
chapters based on Marks 6. 7 or 8 of the FORTRAN Library. Also included are some
facilities not available in other language versions of the Library (e.g. multiple length
integer and rational arithmetic packages and the vector and matrix operations package
= Torrix).

4. Acknowledgement

NAG is most grateful 10 the Royal Signals and Radar Establishment. Malvern for
a significant contribution to the funding of co-ordination for. and contribution to. the
Mark 3 Aigol 68 NAG Library. Our thanks are also due to contributors in university and
research centres for their continuing voluntary efforts.

AB 48p.30
Summary of the contents of the NAG Algol 68 Library, Mark 3

The NAG Library is organised into chapters, each devoted to a branch of numerical computation. Each
chapter has a one- or three—character name and a title, based on the ACN modified SHARE Classification
Index. The chapters in the Nark 3 Library are:

A02 ~ CONPLEX ARITHMETIC

A04 - EXTENDED ARITHMETIC

€02 - ZEROS OF POLYNOMIALS

COS - ROOTS OF ONE OR MORE TRANSCENDENTAL EQUATIONS
C06 - SUMMATION OF SERIES

D01 - QUADRATURE

DO2 - ORDINARY DIFFERENTIAL BQUATIONS

DO4 - NUMERICAL DIFFERENTIATION

D05 - INTBGRAL BQUATIONS

E01 - INTERPOLATION

E02 - CURVE AND SURFACE FITTING

EO4 - NINIMISING OR MAXINISING A FUNCTION
FO1 - MATRIX OPERATIONS, INCLUDING INVERSION
FO2 - EIGENVALUES AND EIGENVECTORS

F03 ~ DETERMINANTS

FO4 ~ SIMULTANEOUS LINEAR EQUATIONS

FOS - ORTHOGONALISATION

GO1 - SIMPLE CALCULATIONS ON STATISTICAL DATA
602 - CORRELATION AND REGRESSION ANALYSIS
G605 — RANDOM NUMBER GENERATORS

H - OPERATIONS RESEARCH

MOI - SORTING

PO1 - ERROR TRAPPING

8 -~ APPROXIMATIONS OF SPECIAL FUNCTIONS
TO1 — VECTOR AND NATRIX OPERATIONS, TORRIX
X02 - MACHINE CONSTANTS

X03 - INNERPRODUCTS M

Eack routine name has six characters. The first three demote the chapter or subchapter and the sixth
and last character is 'B’ in the standard precision version of the Algol 68 Library e.g, DO2ADB,

This document lists the routines in the NAG Mark 3 Algol 68 Library, ohapter by chaptes. Routines
which were imtrodmoed imto the Library at Mark 3 are marked with an asterisk(®). There are 298
routimes accessible to users, of which 11 will be withdrawn at Mark 4 and are not included in this
list, they have boen superseded by improved routines which are slready in the Library.

This document is designed only to give an indication of the contents of the Library. For dotailed
guidance on the choice of a suitable routine, please rofor to the Chapter Introductions in the NAG
Algol 68 Library Mamusl. Each routine is completely specified by a romtime document in the Library
Manual,

For further information about the NAG Library and the North American readers may find it more
NAG Library Service, please contact the Library convenient to contact:
Service Co—ordinstor at:

The Company Secretary,

Numerical Algorithms Group Limited, Numerical Algorithms Growp (USA) Inmc,

NAG Central Office, 1250 Grace Court,
Nayfield House, Downers Grove,
256 Banbury Road, Illinois 60516,
Oxford 0X2 7DE, USA.

United Kingdom.
Tel: (312) 971 2337
Tel: National 0865 511245
International +44 865 511245
Telex: 83354 NAG UK G

AB 48p.31

A02 -

co2 -

Ccos -

Cco6 -

Do2 -

DOS -

CONPLEX ARITHMETIC
Square root of a complex number

EXTENDED ARITHMETIC

Operators for multiple—length arithmetic:
integer arithmetic
rational arithmetic

ZEROS OF POLYNONIALS

All zeros of a polynomial, by Grant and Hitchin's method:
complex coefficients
real coefficients

ROOTS OF ONE OR NORE TRANSCENDENTAL EQUATIONS

Zero of a continuous function of ome variable:
by linear interpolationm, extrapolation and bisection
by byperbolic interpolation
by bisection

Solution of & system of N non-linear equations in N Vlt!‘bl.l (see also Chapter E04):

using function values only
using first derivatives

SUMMATION OF SERIES
Finite Fourier transforms, by Cooley-Tukey algorithm:

2™ real data values

2™ complex dats values

arbitrary number of complex dats values, within & multi-variable transform
Circular convolution of two real vectors of period 2™

QUADRATURE

Gaussian quadrature with a specified number of points:
one—-dimensional integral
complex contour or line integral
multi-dimensional integral over product region

Integral of a function defined by data valmes only, by Gill and Miller's method

Format of structures to define integration rules
Global variables for tofbu'tin. to integration structures
Service routines for structures defiming integration rules:
to obtain closest n—point rule
to obtain mapped set of weights and abscissae

ORDINARY DIFFERENTIAL BQUATIONS

Initial value problems for s system of O.D.E.s:
Nerson’s (Runge-Kutta) method, over ome step

’ over a range

Krogh’s method
Goar's method for stiff systems

Boundary value problems for a system of 0.D.E.s:
Two-point boundary value probles

NUMERICAL DIFFERENTIATION
Derivatives wp to order 14 of = function of a single real variable
Normalised Taylor coefficients of a function of a single variable:
st a point in the complex plane
st a point on the real axis

INTEGRAL EQUATIONS
Linear non-singular Fredholm equation of 2nd ‘kind

AO2AAB*

AO4AAB*
AO4 ABB*

CO2ADB*
CO2AEB*

CO5AAB
COSABB
CO5ACB

CO5NAB®
COSPAB*

COGAAB

CO6ABB*
CO6ADB*
CO6ACB*

DO1BAB
DO1BBB
DO1FBB
DO1GAB
DO1QPB*
DO1QRB

DO1GAB
DO1QBB

DO2AAB
DO2ABB
DO2AHB
DO2AJB

DO2ADB

DO4ABB
DO4ACB

DOSCAB

E01 -

E02 -

E04 -
(a)

(b)

Fo1 -

INTERPOLATION (see also Chapter E02)
Interpolated valumes:
one variable, data at equally spaced points, by Everett's formula
data at unequally spaced points, by fitting cubic spline
two variables, data om rectangular grid, by fitting bi-cubic spline

CURVE AND SURFACE FITTING
Minimax curve fit by polynomials
Least squares curve fit:
by polynomials, arbitrary data points
arbitrary data points, polynomial factor say be specified
special data points (includimg interpolatiom)
by cubic splines (including interpolatiom)
Evaluation of fitted functions:
polynomisl in ome variable, from Chebyshev series form
cubic spline, as computed by EO02BAB, fuanction oaly
function and derivatives
definite integral
Differentiation and integration of fitted functions:
derivative of polynomial in Chebyshev series form
integral of polynomial in Chebyshev series form

MININISING OR NAXINISING A FUNCTION
Function of a Single Variable
Ninimum of a Function of Ome Variable:
using function values only
using first derivative

Function of Several Variables
Unconstrained minimum (easy-to-use routines):
using function values only, quasi-Newton algorithm
using first derivatives, quasi-Newton algorithm
modified Newton algorithm
using first and second derivatives, modified Newton algorithm
Minimum subject to simple bounds on the varisbles (easy-to—use routines):
using function values only, quasi—Newton algorithm
using first derivatives, quasi-Newton algorithm
modified Newton sigorithm
using first and second derivatives, modified Newton algorithm
Mipimum subject to simple bounds on the variables (comprehensive routines):
using function values only, quasi Newton algoriths
using first derivatives, quasi Newton algorithm
modified Newton algorithm
using first and second derivatives, modified Newton algorithm
Unconstrained minisum of a sum of squares:
using first derivatives, Marquardt’'s method
Service routinmes:
finite-difference intervals for estimating first derivatives
check user’s routine for calculating first derivatives of function
check user’s routine for calculating second derivatives of function

MATRIX OPERATIONS, INCLUDING INVERSION
Matrix inversion:
accurate inverse,
complex matrix
real matrix
real symmetric band matrix
real symmetric positive—definite band matrix
real symmetric positive—definite matrix

AB 48p.32

EO1ABB
EO01ADB
EO01ACB

E02ACB
E02ADB*

EO02AFB*
EO02BAB*

E02AKB*
E02BBB*
- BO2BCB*
E02BDB*

EO2AHB*
BO2AJB®

EO4ABB*
EO4BBB*

E04CGB*
EO4DEB*
EO4DFB*
EO4 EBB*

E04YAB*
EO04KAB*
EO4KCB*
EO4LAB*

E04JBB*
EO4KBB*
E04KDB*
EO4LEB*

EQ4GAB*

EO4HBB*
EO4HCB*
EO4HDB*

FO1EDB
FO1EBB
FO1EKB
FO1EHB
FO1EFB

AB 48p.33

approximate inverse,
complex matrix
real matrix
real symmetric band matrix
real symmetric positive—definite band mstrix
real symmetric positive—definite matrix
Pseudo inverse of a real mxm matrix
Generalised or pseudo inverse of ATA, where A is a real mxm matrix
Matrix factorisations (see 2lso Chapter F03):
Rank and QR factorisation of a real mxn matrix, with column pivoting
Balance a matrix by diagonal similarity transformations:
complex matrix
real matrix
Reduction of matrices to condensed form by similarity transformations:
complex matrixz to upper Hessenberg form
complex Hermitian matrix to real tridisgonal form
real matrix to upper Hessonberg form
real symmetric matrix to tridiagonmal form,
full storage mode
full storage mode, sccumulating product of tramsformations
rowwise storage mode
real symmetric band matrix to tridiagonal form
diagonal storage mode
rowwise storage mode

Backtransformation of eigemvectors from those of reduced forms (see slso Chapter FO02):

real symmetric matrix, after reduction to tridiagomal form,
full storage mode
Matrix and vector arithmetic (see also Chapter T01):
complex case,
matriz addition
matrix initialisation
matrix multiplicstion
matrix nom
matrix subtraction
matrix trace
matrix transpose
unit matrix
vector additionm
vector division
vector imitialisation
vector multiplication
vector norm
vector subtraction
integer case,
matrix addition
matrix initialisation
matrix multiplication
matrix nomm
matrix subtractioa
matrix trace
matrixz transpose
unit matrix
vector addition
vector initialisation
‘vector multiplication
vector norm
vector subtraction
real case,
matrix addition
matrix initialisation

FO1ECB
FO1EAB
FO1EYB
FO1EGB
FO1EEB
FO01BLB*
FO1BYB*

FO1BKB*

FO1FBB*
FO1FAB®

FO1UPB*
FO1VPB*
FO1SPB*

FO1AGB
FO1AJB
FO1TPB*

FO1TSB*
FO1TRB*

FO1AHB

FO1D3B*
FO1C3B
FO1D3B*
FO1C6B
FO1D3B*
FO1C6B
FO1C3B
FO1C3B
FO1C9B*
FO1C9B*
FO1C3B
F01C9B*
FO01C6B
F01C9B¢

FO1D1B
Fol1C1B
FO1D1B
FO1C4B
F01D1B
FO1C4B
FO1C1B
FO1C1B
F01C7B
F0171B
FO1C7B
FO1C4B
FO1C7B

FO1D2B*
FO1C2B

matrix multiplication
matrix norm

satrix subtraction
matrix trace

matriz tramsspose

vait matrix

vector additionm
vector divisiom
vector imitialisationm
vector multiplication
vector norm

vector subtraction

F02 — EIGENVALUES AND EIGENVECTORS

Matrix eigenvalue problems (black box routines):
complex matrix, all eigenvalumes and {optionally) eigenvectors
selectod eigenvalues O, Mp#1,...,0q) and eigenmvectors
seloctod eigonvalues (X <AEA) and eigenvectors
complex Hormitian matrix, all eigenvalues and (optionally) eigenvectors
real matrix, all eigenvalues and (optionally) eigenvoctors
selected sigenvalues (Ap,Mp+1,...,2q) and eigenvectors
selected cigenvalues W <I<p) and eigenvectors
real symmetric matrix, all eigenvalues
selected ecigenvalues and eigonvectors
Matrix eigenvalue problems (specialised routimes):
complex matriz, all eigenvalues and (optionally) eigenvectors,
after reduction to upper Hessenberg form by FO1UPB, by LR algorithm
complex upper Hessenberg matrix,
selected eigenvectors, by inverse iterationm
real matriz, all eigenvalues and (optionally) eigeavectors,
after reduction to upper Hessenberg form by FO1SPB, by QR algorithm
real uwpper Hessonberg matrix,
selected eigenvectors, by inverso iteration
real symmetric matrix, all eigenvalues and (optiomally) eigemvectors,
after reduction to tridiagonal form by FO1AJB, by QL algorithm
real symmetric tridiagomal matrix,
selected oigenvalues (€SP and eigenvectors,
by bisection and inverse iteration
real symmotric band matrix,
selected eigenvectors, by imverse iterationm

Backtransformation of eigenvectors from those of reduced forms and normalisation:

complex matriz, after reduction to Hessenberg form
complex Hermitian matrix, after reduction to tridisgonal form
real matrix, after reduction to Hessenberg form
real symmetric matrix, after reduction to tridiagonal form,
rowwise storage mode
Ordering of eigenvalues and (optionally) eigenvectors:
complex matrix,
by moduli
by real parts
real matrix,
by moduli
by real parts

FO03 - DETERMINANTS

Determinant evaluation (black box routines):
complex matrix
real matrix
real symmetric band matriz
real symmetric positive—definite matrix

AB 48p.34
FO1D2B*
FO1CSB
FO1D2B®
FO1CSB
FO1C2B
FO1C2B
FO1CSB
FO1C8B
FO1C2B
FO1CSB
FO1C5B
FO1CSB

FO2GAB®
F026CB*
FO026DB*
FO2HAB*
FO2EAB®
FO2ECB®
FO2EDB*
FO2ZAAB

FO2ACB

FO2UAB*
FO2UCB*
FO2SAB*

F02SCB*

FO2TAB®

FO2ASB
F02TDB*

FO2UPB*
FO2VPB*
FO2SPB*

FO2TPB*

FO2UIB*
FO2UKB*

FO2S5JB*
F023KB*

FO3ADB
FO3AAB
FO3APB
FO3ABB

AB 48p.35

FO4 -~

FOS -

G601 -

real symmetric positive-definite band matrix
LU - factorisation and determinant:

complex matrix

real matrix
ILT - factorisation and determinant:

real symmetric positive—definite matrix

real symmetric positive-definite band matrix
LoiT - factorisation and dotermimant:

real symmetric band matrix

SIMULTANEOUS LINEAR EQUATIONS
Solution of simultaneous linear equations (blsck box routimes):
accurate solutiom,
complex matrix
roal matrix
real symmetric band matrix
roal symmetric positive-definite band matrix
roal symmetric positive—definite matrix
approximate solution,
complex matrix
roal matrix
real symmetric band matrix
real symmetric positive-definite band matrix
real symmetric positive—definite matrix

Solution of simultaneous linear equations (general purpose routines):

accurate solution,
complex matrix
real matrix
real symmetric band matrix
roal symmetric positive—-definite band matrix
real symmetric positive-definite matrix
approximate solution,
complex matrix
real matrix
real symmetric band matrix
real symmetric positive—definite band matrix
real symmetric positive—definite matrix

Solution of simultaneous linsar equations (special purpose routines):

complox matrix
real matrix
real symmetric band matrix
real symmetric positive—definite band matrix
real symmetric positive-definite matrix
Least—-squares solution of m real equations in n unknowns:
rank=n, m)n, accurate solution (black box routine)
rank{n, lesst-squares solution if rank=mn,
otherwise minimal least—squares solution

ORTHOGONALISATION
Schmidt orthogonalisation of n vectors of order m
Normalisation of eigenvectors:

complex matrix

resl matrix

SIMPLE CALCULATIONS ON STATISTICAL DATA
Simple descriptive statistics, one variable
from raw data
from frequency table
Simple descriptive statistics, two variables, from raw data
Freqneney table from raw data

FO3ACB

FO3AHB
FO3AFB

FO3AEB
FO3AGB

FO3AQB

FO4CDB
FO4CBB
FO4CKB
FOACHB
FOACFB

FO4CCB
FO4CAB
FO4CJB
F04CGB
FOACEB

F04DDB
FO4DBB
FO4DKB
FO4DHB
FO4DFB

F04DCB
FO4DAB
FO04DIB
FO4DGB
FO4DEB

FO4BXB
FO4BHB
F04BQB
FO4BLB
FO4BGB

FO4AMB*

FO4AUB*

FOSAAB*

FO5BAB*
FO5BBB*

GO1AAB
GO1ADB*
GO1ABB*
GO1AEB*

One-way analysis of variance
Two—way contingency table analysis

CORRELATION AND RBGRESSION ANALYSIS
Pearson product-moment correlation coefficients:
all or a subset of variables, no missing values
casewise treatment of missing values
pairwise treatment of missing values
‘Correlation-1ike’ coefficients (caloulated about zero):
all or a subset of variables, no missing values
casewise treatment of missing values
pairwise treatment of missing valmes

Kendsll’s and/or Spearman’s non—psrametric rank correlation coefficients:

no missing values, overwriting input data
preserving input data
casewise treatment of missing values, overwritimg input data
preserving input data
pairvise treatment of missing values
Simple linear regression with constant torm:
no missing values
missing values
Simple linear regression without constant temm:
no missing values
missing values
Multiple linear regression with constant term
Multiple linear regression without constant term
Service routines for multiple limear regression:
solect elements from vectors and matrices
re—order elements of vectors and matrices

RANDOM NUNBER GENERATORS
Pseudo-random real numbers frowm continuons distributions:
uniform distribution over (0.0,1.0)
uniform distribution over (a,b)
exponential distribution
logistic distribution
Normal distribution with mean a and standard deviation b
lognormal distribution
Cauchy distribution
Gamma distribution with parameters {(g,h)
Chi~square distribution
Student’s t-distribution
Snedecor's F-distribution
Beta distribution of the first kind
Beta distribution of the second kind
Pseudo—random integor from uniform distribution
Pseudo-random Boolean value
Pseudo—random integer from reference vector
Set up reference vector for generating pseudo—random integers:
uniform distribution
Poisson distribution
binomial distribution
negative binomial distribution
hypergeometric distribution
Set up reference vector from supplied cumulative distribution
function or probability distribution function
Initialise random number gemerating routimes,
to give a repeatable sequence
Save state of random mnumber generating routines
Restore state of random number generating routines

AB 48p.36
GO1ACB®
GO1AFB*

G02CAB
eb2cce

602CBB
€02CDB
- 602C6B
GO2CHB

GO2CEB
G02CFB

GOSCAB®
GOSDAB*
GOSDBB*
GOSDCB*
GOSDDB*
GOSDEB*
GOSDFB*
GOSDGB*
GOSDHB*
GOSDIB*
GOSDKB*
GOSDLB*
GOSDMB*
GOSDYB*
GOSDZB*
GOSEYB*

GOSEBB*
GOSECB*
GOSEDB*
GOSEEB®
GOSEFB*

GOSEXB*
GO5SCBB*

GOSCFB*
GOSCGR*

AB 48p.37

POl -~

OPERATIONS RESEARCH

Linear programming problem:
simplex algorithm, ome iteration
pontracted simplex method

Network problem, shortest path

SORTING

Sort a vector, by Singleton’s implementation of Quicksort:

real aumbers, into ascending order
into descending order
integers, into asceading order
into descending order

character data, into alphanumeric or reverse alphanumeric order
or some other user—specified order
Sort a vector and provide an index to the original order:

roeal numbers, into ascending order
into descending order
integers, into ascending order
into descending order

Provide an index to the sorted order of & vector, leaving the vector unchanged:
resl numbers, into ascending or descending order

integers, into ascending or descending order

Sort the rows of a matrix on keys in an index column:

real numbers, into ascending order
into desconding order
integers, into sscending order
into descending order

Sort the rows of a matrix on keys in an index columa(s):
character data,into alphanumeric or reverse alphanumeric order
or some other user—specified order

ERROR TRAPPING

Suppress or divert error messages

Node of failure routimes

Terminate program with error message and number
Interrupt program with error message and number

APPROXINATIONS OF SPECIAL FUNCTIONS
Arcsin(x)

Arcoos(x)

Tanh(x)

Sinh(x)

Cosh(x)

Arctanh(x)

Arcsinh(x)

Arccosh(x)

Exponential integral, E;(x)

Sine integral, Si(x)

Cosine integral, Ci(x)

Gamma function

Cumulative normal distribution fumction, P(x)

Complement of cumulative normal distribution functiom, Q(z)

Error function, erf(x)
Complement of error function, erfc(x)
Bessel functions:

Tolx)

Ty(x)

Yqo(x)

Yy(x)

HO1ABB
HO1AEB
HO4CAB

MNO1ANB
MO1APB
MO1AQEB
MO1ARB

MO1BAB®

MO1ATB
MO1AKB
NO1ALB
NO1AMB

MO1AAB®
NO1ACB*

MO1AEB
MO1AFB
NO1AGB
MO1AHB

MO1BCB*

NAGERF*
NAGFAIL
NAGEARD
NAGSOFT

SO9AAB*
S09ABB*
S10AAB
S10ABB
S10ACB
S11AAB*
S11ABB*

- 811ACB®

S13AAB
S13ABB
S13ACB
S14AAB
S15ABB
S15ACB
S15AEB
S15ADB

S17AEB*
S17AFB¢
S17ACB
S17ADB

AB 48p.38
Nodified Bessel functions:

Io(x) . S18AEB*
1,(x0) S18AFB*
) Y S18ACB
Ky (n) S18ADB

T01 — VECTOR AND MATRIX OPERATIONS, TORRIX
Torrix Basis, real systems:

fundamental declarations and operators TO1AAB*
array generating routines TO1ABB*
array generating operations TO1ACB*
bound interrogations TO1ADB*
value interrogations TO1AEB*
new values . TO1AFB*
interchanges TO1AGB*
new descriptors) TO1AHB*
trimming operations ' : TO1AKB*
summation and total extrema ‘ TO1ALB*
concrete extrema . TO1AMB*
level 1 assigning additions TO1ANB*
level 1 assigning multiplications TO1APB®
array genmerating additions TO1AGB*
level 2 assigning additions ' TO1ARB*
array generating multiplications with scalar - TO1ASB*
sum products ' TO1ATB*
array generating multiplications TO1AUB*
Torrix Extended, complex systems: * .
fundamental declarations and operators TO1BAB*
array generating routines - TO1BBB*

Torrix Extended, sparse systems:
fundamental declerations TO1CAB*
array generating routines TO1CBB*

X02 - MACHINE CONSTANTS
Implementation-dependent constants and mathematical constants X02AAB*
Implementation—dependent constants for Torrix—B;sis X02ABB*

X03 - INNERPRODUCTS
Single and extended precision inner-products:

complex vectors ‘ X03DBB*

real vectors X03DAB*

rows and columns of real symmetric matrices X03DCB*
Extended precision operationms: K

complex arithmetic X03DBB*

real arithmetic X03DAB*
References

The NAG Algol 68 Library Manual - Mark 3 (1981), NAG Central Office, 256 Banbury Road, Oxford.

