
ISSN 0084-6198

Algol Bulletin no. 4 8
AUGUST 1982

CONTENTS PAGE

AB48.0 Editor's Notes 2

AB48.1
AB48.1.1
AB48.1.2
AB48.1.3
AB48.1.4
AB48.1.5

AB48. i. 6

AB48.4

AB48.4.1
AB48.4.2

AB48.4.3

Announcements
Barry J. Mailloux 2
Computers and Standards - new Journal 4
Proceedings of Van Wi3ngaarden Symposium 4
Numerical Computation and Programming Languages 4
Michel Simonet, W-Grammars and First-order

Logic for the definition and
Implementation of Languages - Abstract 5

Book Review- Draft Proposal for the S
Programming Language 6

Contributed Papers

L.G.L.T.Meertens, Quick Reference to B 7
I.F.Currie and N.E.Peeling,

Modular Compilation Systems for High Level
Programming Languages 18

G.S.Hodgson, The NAG ALGOL 68 Library 27

AB 48!0. i

The ALGOL BULLETIN Is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP WG2.1, Chairman
Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin do not
necessarily reflect those of IFIP and IFIP undertakes no responsibility for any
action that might arise from such statements. Except in the case of IFIP
documents, which are clearly so designated. IFIP does not retain copyright
authority on material published here, Permission to reproduce any contribution
should be sought directly from the authors concerned. No reproduction may be
made in part or in-full of documents or working papers of the Working Group itself
without permission in writing from IFIP."

Facilities for the reproduction of the Bulletin have been provided by courtesy of
the John Ryiands Library. University of Manchester. Word-processing facilities have been
provided by the Barciay's Microprocessor Unit, University of Manchester. using their
Symbolex system,

The ALGOL BULLETIN Is published at irregular intervals, at a subscription of $11
(or £6) per three issues, payable in advance. Orders and remittances (made payable to
IFIP) should be sent to the Editor. Payment may be made in any Currency (a list of
acceptable approximations in the major currencies will be sent on request), but it is the
i'esp0nslbility of each sender to ensure that his payment is made in accordance with the
currency requirements of his own country. Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor. since it is not the
policy of IFIP that anyone should be debarred from receiving the ALGOL BULLETIN for
such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Llndsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL.
United Kingdom.

Back numbers, when available, will be sent at $4 (or £1.80) each. However. it is
regretted that only AB32, AB34. AB35. AB36. AB38-43 and AB45 onwards are currently
available, The Editor would be willing to arrange for a Xerox copy of any individual paper
to be made for anyone who undertook to pay for the cost of Xeroxlng.

AB 48p.2

AB48.0 EDITOR'S NOTES.

Firstly, let me apologlse for the long gap between the date on the last Issue
(August 1981) and the date when It was actually mailed (late December). We had
problems in getting a decent reproduct ion of the Report and other documents contained
In the microfiche. One result of this was that the symposium to mark the ret i rement of
Professor van Wljngaarden was over by the t ime you received the notice of It. However
the proceedings of that symposium are now available, as announced elsewhere In this
issue,

Cambridge Conference

Some time ago, you received a Call for Papers for another ALGOL ,68 Conference
to be held In Cambridge In December of this year. Unfortunately, there was not sufficient
response to enable the organlsers to proceed. It Is therefore regretted that the
Conference has been cancelled.

ALGOL 88 on the VAX

Most of you will also have received a questionaire from SPL International, who
have been commissioned to study the market potential for a possible Implementat ion of
ALGOL 68RS (the Malvern dialect already available on ICL 2900 equipment) on the VAX.
If the response Is good, they might even go ahead and implement It. So please will
everybody with even a marginal Interest in such a project please respond. It Is only by
vigorously responding to such initiatives that we shall ever get ALGOL 68 more widely
Implemented.

Inflation

The price of the ALGOL Bulletin has remained at =10 per 8 Issues since January
1980. However, even with the smaller size (which saves on postage as well as on
printing) It is only just breaking even - and we really ought to be building up a small
reserve. The last three Issues were very thin on pages (for reasons which I keep
complaining to you about), but I would really like to budget on an average Issue of 50
pages (which is sUll thin by some previous standards).

Therefore, most of you will see from the subscription notice enclosed with this
issue (although some people's subscript ions are phased differently) that the pr ice has
gone up to $11 per three issues, the sterling price being £6. To those of you who pay
in dollars, the increase may seem trivial. Not so tO those who pay in sterling - which
all goes to show how unfair and unpredictable exchange rates are. My printing bill has
to be paid in sterl ing, and the rates quoted above do In fact allow for a little adverse
movement of the exchange rates in the future.

AB48.1 Announcements.

AB48.I.1 Barry J. Mallloux: 1939 - 1982.

Bad news irom Canada. Even though we all knew Barry James Mallloux would not
hve much longer, it still came as a shock to hear he died.

Exactly when Barry joined the Mathematical Centre In Amsterdam I do not recall,
Out somewhere in 1966 our plotter started to be much more useful: Barry had brought
the wonderful world of Computer Graphics to Amsterdam. When I was grabbed by Add
van Wijngaarden In the middle of 1967 to become the junior Editor of the ALGOL 68
Report, I came to share a cubicle with him. He looked obviously and outspokenly North
American, wearing a shoelace as a tie, colourful trousers and jackets and speaking
oxplosively in a curious extended subset of Dutch.

Barry's responsibil i t ies in the making of the Report were many: He carefully
guarded its stylo and orthography, alerting us to Webster, Roget's Thesaurus and the

AB 48p. 3

distinction between skewed and straight commas. He kept In his head a comprehensive
overview over the whole document as It was updated dally and wholly rewritten every few
months without the benefit of any automatic support for editing, cross-referencing and
formatting. But his main task was to ensure the Implementablllty.

For every aspect of the language, singly and in orthogonal combinations, Barry
would dream up a number of possible Implementations, be It syntactic (e.g." assuring
parseablllty of the twO level grammar) or semantic (considering the feasibility and
efficiency of various Implementation models).

For computer scientists raised In the ALGOL tradition, both Barry and I had an
unusual experience In real- l i fe FORTRAN programming under early IBM operating
systems, so that we shared a great concern for the transput of the new algorithmic
language.

The mornings we would spend brainstorming, discussing and writing. In the
afternoon, Aad would smilingly Invite us Into his room or even, occasionally, to his
splendid house In Amstelveen. The three of us (or four, whenever John Peck managed
to join us in person) always carried our annotated copy of the latest Intermediate draft.
Social conversasUon was In Dutch, but English was our working language even though
Barry (and John) were fluent enough in the vernacular.

Tirrhenia In mid 1968 was my first WG 2.1 meeting, and also the place where I
lost my virginal awe for the great Computer Scientists. The discussions were very Intense
but often not so deeply technical since the grasp of detail of the Working Group
members was by necessity not so thorough as that of the authors. In the midst of the
melee, Barry served as a bridge between the Senior Editor and the rest of the Wolrklng
Group, pouring water on the troubled flames by working day and by drinking night,
integrating each constructive proposal from the Working Group Into the fabric of the
Report. In this situation, Barry was at his best: keeping the visionaries and the realists
together.

In the months that followed, the Editors grew even closer together, working
through stacks of letters from people reacting to MR 93 and later drafts, many of whom
we later came to know very well, sharing a vision and expressing It In the terse prose
of MR 95. MR 99 and MR 100, living through the meeting In North Berwlck and the
Pyrrhic victory for ALGOL 68 in Munich in December 1968, where not even Barry's sense
of balance could keep the ALGOL group together.

In the following years, Barry returned to Canada and concerned himself with
teaching and implementation. The FLACC compiler was one of the results. We were
endlessly embroiled in the Revision of the Report.

For the last 14 years Barry was suffering from a brain tumour. Repeatedly he was
treated and recovered, but his health and his pleasure in life were steadily diminishing.
Barry has deserved the rest he has now found. I am proud and thankful to him for the
years we have worked together for ALGOL 68.

C. H. A. Koster

Postscript.

Although Barry's main contribution to ALGOL 88 was In the original Report, he did
also play a substantial role in the Revision. being responsible for keeping the texts as
they were prepared (this time in machine-readable form) and eventually for their
typesetting.

The Editors of the Revision spent three weeks with him at Edmonton In the
summer of 1974, where many happy hours were spent arguing over such matters as the
correct form for the negative of the subjunctive In English, and the proper fount In which
to represent "nil'.

/

AB 48p. 4

After that, he began to take an interest in machine architecture, especially as It
could be realised by mlcroprogrammlng, and finally, with the advent of X-ray scanners
and their increasingly frequent application to his own head, he embarked upon research
into computerized tomography. As he said, "If you can't beat them

C. H. Lindsey

AB48.1.2 New International Journal on COMPUTERS & STANDARDS,

North-Holland Publishers (New York and Amsterdam) has launched a new
international journal, COMPUTERS & STANDARDS: THE INTERNATIONAL JOURNAL.

Editor- in-Chief will be John Berg, known internationally for his work In this
area.

Mr. Berg has stated that COMPUTERS & STANDARDS will provide a long-needed,
independent forum for the vendors, the business community, academia, and the standards
professionals. The journal seeks to provide, on a world-wide basis, fair and equal
treatment for all views consistent with an orderly and constructive discussion of computer
standards Issues.

Interested professionals may request a FREE copy of the premier Issue (on official
letterhead) from: Judy Marcure. North-Holland Publlshlnbg Company, P.O. Box 103, 1000
AC Amsterdam, The Netherlands.

AB48.1.3 Proceedings of Van WIjngaarden Symposium.

ihe proceedings of the Symposium held, from Oct. 26-29 1981. to mark the
retirement of Professor A. van Wijngaarden have been published by North Holland
Pubfishmg Company under the title "Algorithmic Languages" (Eds J.W. de Bakker and J.C.
van Viler). A full list of the papers given at the symposium and now published in these
proceedings can be found in AB47.1.1.

AB48.1.4 Numerical Computation and Programming Languages.

The Proceedings of the IFIP TC2 Working Conference on "The Relationship
between Numerical Computation and Programming Languages" (Ed. John K. Reid), held
at Boulder, Colorado from Aug. 3-7 1981, have been published by North Holland
Publishing Company.

Of particular interest to readers of this Bulletin may be the paper by C.G. van der
Laan (Rljksunlversitelt Groningen) entitled "Programming in ALGOL 68 (as a host) and the
Usage el FORTRAN (program l ibraries)' , of which the following is the Abstract:

A technique is described whereby a collection of FORTRAN subprograms can be
made available to users of other programming languages, notable ALGOL 68. This
is illustrated with some examples from Forsythe-Malcolm-Moler.

AB 4 8 p . 5

AB48 .1 .5

T h e s i s p r e s e n t e d by Miche l SIHONET - J u l y , 3 r d 1981 - U n i v e r s i t y o f G r e n o b l e

W.GRAMMARS AND FIRST-ORDER LOGIC FOR

THE DEFINITION AND IMPLEMENTATION OF LANGUAGES

Abstract

W-grammars are a powerful tool for the definition of languages. Their general

form cannot reasonably be implemented. Moreover, their expressive power~glves

rise to risks of abusive use. A proposition is made to restrict them i~ a way

which can be implemented in flrst-order loglc.

In the first part, after an introduction to Wmgrammars, the author presents a

survey of the studies made in this area : by Sintzoff, Hesse, Wegner, Deussen,

Demblnsky, Maluszinsky, as well as formalisms similar to or derived from

W-grammars : attribute systems from Knuth, affix grammars from Koster, Extended

Affix Grammars from Watt, Bracketed two-level grammars from Deussen and conju-

gatlon grammars from Kramer and Schmidt. It is followed by a presentatioi~ of

first-order logic, the PROLOG language and metamorphosis grammars, and the for-

malism of ramifications [tree-like structures, as defined by Pair] used in the

third part for t h e definition of RW-grammars.

In the second part, three experiences of implementation in PROLOG of languages

defined by a W-grammar are presented. The first one is a transcription in

PROLOG of the W-grammar of ASPLE, A Simple Programming Language, already used

for comparing methods of definition of languages. The second one is a subset of

Algol 68 and the third one is the grammar of types in a high level language.

In the third part, a new class of W-gram~Bars is defined : RW-grammars, whose

metanotions are ramifications (trees, terms) instead of chains. These RW-grammars

are equivalent to Horn Clauses (clauses of logic having at most one positive

litteral) whose variables take values in domains specified by regular bi-grammars

(grammars for trees). These clauses may be implemented very easily in PROLOG,

and a proposition is made to introduce domains for the variables in this language i
in order to increase its expressive power as well as to ensure a safer program-

ming.

48p.6

AB48.1.6 Book Review : Draft Proposal for the B Programmlna LanguaGe.

by Lambert Meertens.
Mathematical Centre, Postbus 4079. 1009 AB Amsterdam.
iSBN 90 6196 238 2.
• Price: HFI 11.55.

B is a language designed by Lambert Meertens. with help from Leo Geurts and
further input from Robert Dewar. to be a solution to the fol lowing equation:

B : BASIC = PASCAL : FORTRAN

Its original target was undoubtedly the ecological niche which BASIC seems to have
found for itself in small home and school micros. However. It has now moved a little
bit upmarket, and descr ibes itself as a "simple language fo r .use on personal computers ' .
I t is intended to be embedded In its own B system (if there happens to be a larger
operating system hiding in the background, that fact should, so far as possible, be
Invisible to the user). The command language of the B system should be B Itself. Flies
in t he ,B system are just B variables which, being created at the system level, have a
permanent existence. An integral editor will prevent entering anything but correct B
syntax, which will appear in a canonical pretty-pr inted layout on the screen (which
means, for example, that change of indentation level Is signif icant in the language.
el iminating the need for begin, end, fl and the like).

Rather than give you a quick rundown of what Is in the language itself. I have
obtained permission to reproduce the "Quick Reference" section of the Proposal, and It
appears as the next art ic le in this Bulletin. I hope you like its style. The rest of the
document Is written in a more conventional and formal manner, In the main. this fol lows
the style of the Revised ALGOL 68 Report with a 2- level Van WlJngaarden grammar (but
not incorporat ing all of the type checking as yet). However. just as the language Is
simpler, so is its descript ion less formidable. The most difficult part (which I must
confess I nave not yet fully understood) is the strong typing which It Is claimed (in spite
of the absence of declarations) can mostly be c h e c k e d at compi le time.

The present state of the project is that the language Is now defined, but by no
means frozen. Trial implementations are now In order (and prospective Implementers are
welcomed), The experience gained will help to improve the language for Its final "official"
definition.

C.H. Lindsey

AB 48p.7

AB48.4.1
QUICK RIEFERENCE to B, by L.G.L.T. Meertens

Numbers are exact or approximate. You get an exact number even if you use
3.14 or 22/7. You get an approximate number if you use E for the ten
power, or if you use the ~ function (pronounced "about"). For example,
~1000 = E3, and ~0.005 = 0 . 5 E - 2 . You may also write ~(a+b) etc.
Warning: an approximate number is never equal to an exact number. If you
want to test if you may divide by x, and if you are not very sure that x is ex-
act, it is not safe to use the test x < > 0 (which is shorthand for
(x < 0 OR x > 0)). You should use ~ x < > ~0.
If functions fike +, - , *, / and ** work on exact numbers, the result is also
computed exactly, except if the exponent n in x**n is a fraction. (A formula
like a , x * * 2 + b , x + c stands for what is usually written as ax2+bx+c: your
computer cannot stand dancing lines and requires that you write • whenever
you mean multipfication, even in cases like 2*x.) Arithmetic on approximate
numbers gives approximate results (which, for many purposes, are precise
enough, and often are computed much faster). Functions like root, sin and
log always give an approximate result. (So root 4 <> 2 and log I <> 0).
More details are given at the functions below.

Texts consist of characters and are written like 'Jack andJi i l ' or
"Jack and Jill". (The characters meant are not Jack and Jill, but the "J",
"a", etc. You may use any printing character and the space.) Which of the
forms you use, the one with single quotes or the one with double quotes,
makes no difference to your computer. Never confuse the number 747 with
the text '747'. Whereas 747 = 3,249, '747' is quite another text than the
text '3 .249' , and '3 ' , ' 249 ' is not even a text; to your computer it is mean-
ingless. The number 747 can be used to do arithmetic; to your computer it
does not consist of characters and it is written that way only because the
dominant earthian species has twice five wriggly appendices sprouting from
its upper tentacles and finds this clumsy notation convenient, and because
you are (presumably) a member of that species and your computer tries to
please you. The text '747', on the other hand, cannot be used in arithmetic,
and if you nevertheless try to do so, your computer will warn you. It really
is three characters in a row. The so-called quotes on the outside do not real-
ly count. They only serve to make clear where the text begins and ends. If
you say prayers, it does not mean that you say "prayers". But if you say
"prayers", you don't say the quotes, do you? You can find out the length of
a text with the function # . For example, # ' toe' = 3. If you use ' before
and after your text, you can only use it inside if you double it thus: ". Your
computer knows that you really mean it only once: # ~ " q ' = 3. The rules
for " are similar,
But if you use the other quote sign inside than the one you use on the out-
side, you should not double it. So write either: 'He said: "don"t!" ' or:
"He said: ""don 't!""".

AB 48p.8

Inside texts, you can use weirdos (which are known as conversions) of the
form "e'. Your computer computes the value and replaces the conversion by
a suitable text. For example, if i = 239 and j = 4649, then
"i" • ~/" = " i . j " = '239 • 4649 = 1111111'. Within the conversions the
need to double the outside quotes inside has disappeared: " # ' toe" ' = '3'.
(Don't look too long at it if you don't want to strain your eyes.) On the other
hand, if you use a single " as character in a text, you have to double it.
You can join two texts thus: 'now 'A 'here ' = 'nowhere', and you can repeat a
text as many times as you want: 'ox'^^3 = 'ox '^ 'ox '^ 'ox ' = 'oxoxox' (just
like x**3 = x . x . x) . You can take texts apart thus: 'lamplight'Q4 = ~light'
(since the "p" is the fourth character) and 'scarface'[5 = 'scarf'.
You may combine @ and l: 'Benedictine'@4[5 = 'edictine'[5 = 'edict', and
'Benedictine'[8 ~ 4 = 'Benedict 's4 = 'edict'.
Forms with @ and I may be used as targets:
if t has as content 'Benedictine', and you tell your computer to

P U T 'zedr' IN t@415

it puts 'Benzedrine' in t; if t is ~articiple' and you tell your computer to

P U T " I N t l 8 ~ 7

it puts particle' in t; and if t is 'creation' and you tell your computer to

P U T 'm' I N t~410

or to

P U T 'm' I N tl3@4

it puts 'cremation' in t.

Compounds are a bunch of values grouped together. For example, ff you
want to keep track of which books you have lent when to whom of your
friends, you may tell your computer to

P U T ' N & P ; 'Mote' I N book
P U T 84, 3, 17 I N date
I N S E R T book, date, 'bearded gnome' I N books'lent

and your computer inserts (('N&P', 'Mote'), (84, 3, 17), 'bearded gnome') in
the fist of lent books it keeps for you. (Better ask him his name next time,
though.)
You can obtain the fields (as they are called) by putting the compound in a
compound target. In the example, your computer would obey

AB 48p. 9

P U T book I N author, title

by putting 'N&P' in author and 'Mote' in title.
The following is a neat trick to swap the contents of two targets:

PUTa, b l N b , a.

This tells the computer to make the compound 01, b) and to decompose it
into (b, a).

Lists are like lists you make to do shopping: ff you and a friend of yours
each make a fist, and your fist is

tooth paste
shampoo
cucumbers
yoghurt
muflin~
birthday present for linda

and your friend has

birthday present for linda
shampoo
tooth paste
muffms
cucumbers
yoghurt

and you compare fists, you will exclaim: why, we have exactly the same fist.
Similarly, your computer considers {t; s; c; y; m; b} and {b; s; t; m; c; y} as
the same fist. In fact, it always sorts the entries in a list from low to high; if
you tell your computer to

P U T {5; 7; 3; 2} I N a
I N S E R T 4 I N a
W R I T E a

you will see {2; 3; 4; 5; 7} written. The same entry may occur several times
in a fist. If you tell your computer to

\

AB 48p. I0

PUT {} I N letters
FOR c IN 'mississippi':

I N S E R T c I N letters
W R I T E letters

it writes back {'i'; 'i'; 'i'; 'i'; 'm" 'p'; 'p'; 's'; 's'; 's" 's'}.
You may insert all kinds of values in a list, but for each list they must all be
the same type of value (all numbers, or all texts, etc.). You may use {l..n} as
shorthand for {1; 2; ... ; n - I ; n} and similarly { 'a'.. 'z'}.

Tables are somewhat like dictionaries. A short English-Dutch dictionary (not
sufficient to maintain a conversation) might be

aardvark: aardvarken
apartheid: apartheid
furlough: verlof
of: van
or: of
van: bestelwagen
yacht: jacht

Table entries, like entries in a dictionary, consist of two parts. The first part
is called the key, and the second the associate. All keys must be the same
type of value, and similarly for associates. A table may be written thus:
{[77: 1; ['VT: 5; ['XT: w}.
If this table has been put in a target roman, then roman['X7 = 10.
Your computer keeps the tables sorted by key. If you next tell your comput-
er to

PUT 100 IN roman['C']

then roman will contain {['C7: 100; [7 7 : 1; ['V']: 5; ['XT: 10}. You can
find out what the keys are with the function keys; in the example,
keys roman = {'C'; 7;" 'V;" 'X'}.

PREDEFINED COMMANDS

H O W ' T O c: commands
tells your computer how to execute your command c. It must not be used in-
side other commands.

YIELD f: commands
tells your computer what value it must yield for your formula f when it is
computed. It must not be used inside other commands.

AB 48p. II

T E S T p: commands
tells your computer whether your proposition p should succeed or fail when it
is tested. It must not be used inside other commands.

C H E C K test
checks if the test succeeds, in which case nothing happens, but aborts if the
test fails.

W R I T E e
writes the value of e on the screen.
and after e.

It gives new lines for any/ -s igns before

R E A D t EG e
asks an expression from you to put in t. The e tells your computer what type
of expression to ask for (number, text, etc.).

P U T e I N t
puts the value of e in t.

D R A W t
draws a random number (from ~0 up to ~1) and puts it in t.

C H O O S E t F R O M 1
chooses at random an element from the text, list or table 1 and puts it in t.
(The element is not removed from 1.)

S E T ' R A N D O M e
sets the random generator, using the value of e.

R E M O V E e F R O M 1
removes the value of e from the list held in 1. The value must occur in that
list. It is removed only once.

I N S E R T e I N 1
inserts the value of e in the list held in 1.

D E L E T E t
deletes the target t.
permanent targets.

This is used mostly to delete entries from tables or to kill

s o _ ~op.12

QUIT
quits from a H O W ' T O or refinement.

R E T U R N e
returns the value of e from a Y I E L D or refinement for further computation.

R E P O R T test
reports from a T E S T or refinement whether the test succeeds or fails.

S U C C E E D
reports success from a T E S T or refinement.

F A I L
reports failure from a T E S T or refinement.

I F test: commands
executes the commands if the test succeeds.

S E L E C T :
test: commands

test: commands
selects the first test to succeed and executes the commands after that test. At
least one test must succeed. To'make sure, the last test may be E L S E , which
catches if all other tests fail.

W H I L E test: commands
executes the commands if the test succeeds, and keeps repeating this while
the test keeps succeeding. If it fails the very first time around, the commands

are not executed at all.

F O R t I N e: commands
executes the commands for t ranging over the successive characters of • if e is
a text, entries of e if e is a list, and associates of • if • is a table.

A L L O W t
allows the use of the permanent t inside
TEST-body. It must occur there at the head.

a H O W ' T O - , Y I E L D - or

AB 48p.13

PREDEFINED FUNCTIONS AND PREDICATES

Fenctiem on numbem

~ X
returns an approximate number, as close as possible in arithmetic magnitude

to x .

x+y
returns the sum of x and y. The result is exact if both operands are exact.

returns the value of x.

x - y
returns the difference of x and y.
act .

The result is exact if both operands are ex-

- - X
returns minus the value of x. The result is exact if the operand is exact.

x * y
returns the product of x and y.
act .

The result is exact if both operands are ex-

x/y
returns the quotient of x and y. The value of y must not be zero (i.e.,
~y < > ~0). The result is exact if both operands are exact.

x * * y
returns x to the power y. The result is exact if x is exact and y is an integer.
If x is negative (i.e., ~ x < ~0) , y must be an integer or an exact number with
an odd denominator. If x is zero, y must not be negative. If y is zero, the
result is one (exact or approximate).

n r o o t x
returns the same as x * * (1 / ~ .

root x
returns the same as 2 root x.

abs x
returns the absolute value of x. The result is exact if the operand is exact.

AB 48p.14

sign x

returns an exact number from {-1 . .+1} with the same sign as x (where, e.g.,
sign ~ 0 = sign - ~ 0 = 0).

f l o o r x
returns the largest integer not exceeding x in arithmetic magnitude (so, even
if perhaps 3 > ~3, floor ~3 still returns 3).

ceiling x
returns the same as - f loor - -x .

n round x
returns the same as (lO**-n)* f l oor (x* lO**n+.5) . For example 4 roundp i =
3.1416. The value of n must be an integer. It may be negative:
(- 2) round 666 = 700.

round x
returns the same as 0 round x.

a m o d n

returns the same as a-n,floor(a/n).
and n may be negative, but not zero.)

(Both operands may be approximate,

/~x
returns the smallest positive integer q such that q*x is an'integer. The value
of x must be an exact number.

. I x
returns the same integer as (/ . x) . x . So, if x is exact, x = (. / x) / (/ * x) .

pi
returns approximately 3.1415926535

sin x

returns an approximate number by applying the sine function to x.

COS X

returns an approximate number by applying the cosine function to x.

fan x

returns the same as (sin x) / (cos x).

AB 48p.15

x atan y
returns an approximate number phi, in the range from (about) - p i to +pi,
such that x is approximated by r • cos phi and y by r • sin phi, where r =
root(x*x+y*y). The operands must not both be zero.

atan x
returns the same as 1 atan x.

e

returns approximately 2. 7182818284

exp x
returns approximately the same as e**x.

logx
returns an approximate number by applying the natural logarithm function
(with base e) to x. The value of x must be positive.

b ~ x
returns the same as (log x) / (log b).

(There should also be a collection of simple matrix functions.)

Functions on texts

t^l/

returns the text consisting of t and u joined.
'nowhere'.

For example, 'now'A'here' =

t^^n
returns the text consisting of n copies of t joined together. For example,
'Fi! 'AA3 = 'Fi! Fi! Fi! '. The value of n must be an integer that is not nega-
tive.

x<<n
converts x to a text (see 5.1.2.2.b) and adds space characters to the right until
the length is n. For example, 123<<6 = '123 '. In no case is the text
truncated; if n is too small, the likely effect is that your beautiful lay out is
spoiled. The value of n must be an integer.

X > < n
converts x to a text and adds space characters to the right and to the left, in
turn, until the length is n. For example, 123><6 = ' 123 '. In no case is
the text truncated. The value of n must be an integer.

AB 48p.16

x > > n
converts x to a text and adds space characters to the left until the length is n.
For example, 123>>6 = ' 123'. In no case is the text truncated. The
value of n must be an integer.

Functions and ffedicates on texts, lists and tables

keys t
requires a table as operand, and returns a list of all keys in the table. For ex-
ample, keys {[1]: 1; [4]: 2; [9]: 3} = {1; 4; 9}.

t
accepts texts, lists and tables. For a text operand, its length is returned, and
for a list or table operand, the number of entries is returned (where dupli-
cates in lists are counted).

e # t
accepts texts, lists and tables for the right operand.
For a text operand, the first operand must be a character, and the number of
times the character occurs in the text is returned. For example,
' i ' # 'mississippi' = 4.
For a list operand, the number of entries is returned that is equal to the first
operand (which must have the same type as the list entries.) For example,
3 # {1; 3; 3; 4} = 2.
For a table operand, the number" o f associates is returned that is equal to the
first operand (which must have the same type as the associates in the table.)
For example, 3 # {[1]: 3; [2]: 4; [3]: 3} = 2.

e i n t
accepts texts, lists and tables for the fight operand. It Succeeds if e # t > 0

succccd$.

e not'in t
is the same as (N O T e in O.

m i n t
accepts texts, fists and tables. For a text operand, its smallest (in the ASCII
order) character is returned, for a list operand, its smallest entry is returned,
and for a table operand, its smallest associate is returned. For example,
min 'syrupy' = ~ ' , min {1; 3; 3; 4} = 1, and rain {[11: 3; [2]: 4; [3]: 3} = 3.
The text, list or table must not be empty.

AB 48p . 17

e m i n t
accepts texts, lists and tables for the right operand.
For a text operand, the first operand mus t be a character, and the smallest
charac te r in t h e t e x t exceed ing that character is returned. For example ,
' i ' rain 'miss iss ippi ' = 'm' .
For a list operand, the smallest entry is returned exceeding the first operand
(which must have the same type as the list entries.) For example, 3 rain {1; 3;

3;4) =4.
For a table operand, the smallest associate is returned exceeding the first
operand (which must have the same type as the associates in the table.) For
e~tmple, 3 rain {[1]: 3; [2]: 4; [3]: 3} = 4.
There must be a character, list entry or table associate exceeding the first
operand.

m a x t a n d e m a x t
are l i ke rain, except that they return the largest element, and in the dyadic
case the largest element that is less than the first operand. For example,
' m ' m a x 'miss iss ippi ' = 'i ' .

. th'of t
requires an integer in (l . .# t } for the left operan~ and accepts texts, fists and
tables for the fight operand. It returns the . ' th character, fist entry or associ-
ate. In f a c t , , th'oft, for a text t, is written as easily t@n]l . For a table, it is
the same as tin th'of (keys t)], which is something different from t[n], unless,
of course, keys t = (1 . .# t } . For a fist, 1 th'of t is rain t.

48p.18

AB48.4.2 Modular Compilation Systems for

High Level Programming Languages

by I .F. Currle and N.E. Peeling
(Royal Signals and Radar EstabllshmenC, Malvern)

Introduction

This paper will try to draw some conclusions from the experience gained by
the different implementations of modular compilation in Algol 68. This
does not mean that it is written only for the Algol 68 community. It is
also produced for those working on new high level languages, notably Ads,
in the hope that they may avoid some of the problems that have befallen the

implementors of Algol 68.

The proposed standard for Ads [I] seems to indicate that many of the
lessons painfully learnt by Algol 68 implement6rs have not been passed on
to the designers of Ads. Although one of the design goals of Ada was that
the language should offer "support for separate compilation of program
units in a way that provides the same degree of checking as within the
unit", the proposed standard describes a system for modular compilation
that is more dangerous than any such system that has been implemented in

Algol 68.

What is modular compilation?

A modular compilation system allows a large program to be subdivided into a
number of smaller modules which can be submitted for compilation
separately.

By making the separate modules as self-contalned as possible they can be
used in the production of more than Just the one program. To this end each
module has a specification which defines which parts are visible outside
itself. This allows the possible interactions between modules to be
checked. The specification defines ~ module to the outside world so that a
module can be altered and recompiled without affecting any other modules
provided that its specification remains the same. It can be seen that if a
separate compilation system admits a natural subdivision of a programming
task it will provide a useful means of dividing a large problem into
manageable sized portions as well as mlnimlsing the amount of recompilation
necessary during development.

What is a natural subdivision of a programming task?

Programming is often described in terms of the "top down"and the "bottom
Up" approaches. The top down approach starts with a high level description
that breaks the problem down into a number of steps which are only
specified in general terms. Each of these steps is then tackled in a
similar manner by breaking it down into even smaller Steps. At each level
more detail is introduced until a complete solution has been generated.

The bottom up approach starts by defining the lowest level of primitives
first (for example defining the data structures and basic procedures for
manipulating them). These primitives are then used to produce a more
powerful set of facilties which can then in turn produce yet more powerful
ones until the problem can be easily solved using the facilities that have
been built up. The building of a subroutine library is a naturally bottom
up activity with each new level producing routines of greater
sophistication but less wide ranging applicability.

AB 48p.19

The top down approach tends to be used to solve a specific problem while
the bottom up approach is parbicularly suited to the provision of a set of
utilities that can be used selectively to help solve a wide range of

problems.

Modular compilation systems need to provide two different types of modUle
to cater for the top down and the bottom up approaches. All separate
compilation systems produced for Algol 68 have catered for the bottom up
approach (after all this is the sort of facility offered by most FORTRAN
compilers), but only a few have provided a type of module suitable for top
down usage. In real life, a problem will tend to be solved by a mixture of
the two approaches, so where two different types of module are provided it
is usually possible to combine them in a natural manner.

Some systems draw a distinction between modules and compilation units
because the visibility rules for modules do not have to be linked to a
particular compilation mechanism. For the sake of simplicity we will treat

them as one and the same.

We will only be considering bottom up modularisation because it is the more

important of the two types.

In its simplest form bottom up programming provides the facility to
separately compile some (possibly restricted) piece of program, to which
has been added a means of publishing identifiers declared in it for use by
other modules or programs ("keep" and "pub" constructions have been used
for this purpose). Kept identifiers are made available to other modules or
programs if a simple directive is included in their text ("with", "use" and
"access" have all been used for this sort of construction).

Simple procedure modules

The simplest and safest piece of program allowed as the unit of separate
compilation is a single procedure declaration (we will refer to these as
simple procedure modules). Simple procedure modules correspond to the
units of separate compilation in most FORTRAN systems. Large libraries
have been written in FORTRAN so it is reasonable to ask why high level
languages such as Algol 68 and Ada need a different type of module. The
answer is that if Ada and Algol 68 are satisfied just to copy the
facilities that can be provided by FORTRAN libraries then there is no
reason why simple procedure modules should not suffice. Writers of Algol 68
and Ada can however make great use of the data structuring provided by
such languages and may well wish to declare and initialise data structures

and make them available in the library.

A separate compilation system based on simple procedure modules has been
implemented in Algol 68 (the CDC system). It provides a little more than
this by navir4~ a single module (called a prelude) in which objects other
than procedures can be declared and initialised. The prelude is
automatically obeyed before all programs that use the library. The CDC
system does present certain practical problems. If data space is to be
created by the library it can only be generated locally in a procedure, or
locally in the prelude which is then global to all users of the library, or

i

AB 48p.20

by using a global generator which will use the heap with its associated
overheads. The CDC systems can also give rise to very large preludes for
very large libraries. For these reasons the simple procedure modules are
unpopular with the producers of large libraries (eg the NAG library).

Procedures in Algol 68 (and their equivalents in Ada) are restricted in
that they cannot be produced dynamically (in particular a procedure cannot
produce a new meaningful procedure as its result). This restriction is
imposed to allow efficient "stack based" implementations of the languages.
If this restriction is removed, procedures become increasingly attractive
as the basic unit for separate compilation. A module could most naturally
be treated as a procedure delivering keeps as its result (hopefully using a
nice structuring facility that allows easy access to the different
fields). The module's parameters would either be procedures (unevaluated
modules) or keeps (evaluated modules). This approach is still not a
complete solution because you cannot say "only evaluate this module if it
has not been evaluated by some previous module". It is because modular
compilation systems are trying to get the effect of dynamically produoe~
procedures, without abandoning "stack based" implementations, that leads to
all the complexities that are assumed to be inherent in separate
compilation systems.

Modules requiring elaboration

Simple procedure modules consist of compiled code that is obeyed whenever
the procedure is called. If separately compiled modules do more than just
declare procedures, for example declare variables, the module may also
contain code that is obeyed before the using program (the obeying of this
code is referred to as the elaboration of the module). If more than one
such module is being used, it becomes necessary to know if the order of
elaboration of the modules is important. It may also be important to know
how many times each module is elaborated.

An obvious extension to the simple procedure module is to make the unit of
compilation as unrestricted as possible. To this end many systems allow
any legal sequence of statements-(with some expression of the module's
external specification) to be compiled separately. This is the only unit
of separate compilation i~Algol 68-R [2], it is one of the units in the
proposed standard for Algol 68 [3], and it is also one of the units in the
proposed standard for Ada.

This is obviously a much more flexible unit than the procedure
declaration. Unlike the procedure declaration these modules may require
elaboration and a simple example will suffice to show that the order of
this elaboration may have to be known if the result is not to be
ambiguous.

In our examples modules will be headed by the word module followed by the
name of the module. An (optional) use list of module names may be included
after the module name; this use list will provide access to all the
identifiers published by the modules named in it and will also cause their
elaboration if required. The modules may publish identifiers in a keep
list at the foot of the text.

AS 4 8 p . 21

MODULE a a =
(INT i : = 1)

KEEP i

MODULE b b USE a a =
(. . . . ; i :ffi i + 1 ; )

KEEP

MODULE oc USE a a ffi
(. . . . ; i := 2 ; )

KEEP

This example shows t h a t there is a n o b v i o u s partial order within a library
of modules because module aa must be cempiled before either bb or co. It
is thus easy to say that aa must be elaborated first, but any program that
uses both bb and cc must know the order of their elaboration. For example,
if the order of elaboration is aa, bb, cc the variable i refers to 2, but
if the order of elaboration had been aa, ca, bb the variable i would have

refered to 3.

We have So far assemed that there was only one elaboration of each module
so that there was only the one copy of the variable i, which allowed the
modules to communicate via the common reference. If any module that used i
had its own copy (iea module is elaborated as many times as it is used)
such communication would have been impossible. It should be obvious that
the number of copies of each module will affect any decisions made to
define the nature of any communication between modules using co~mon
references (communication during the elaboration is often referred to as a
side-effect). Is such communication a defect or a facility? It is easy to
construct examples where you want communication and equally easy to
construct examples where you do not (consider a module that defines a
procedure that produces elements of a pseudo-random sequence - do you want
modules to use the same random sequence, or do they each require their

o w n ?) .

i o o n e h a s m a n a g e d t o d e v i s e a s y s t e m t h a t a l l o w s t h e u s e r t o c h o o s e a s
m a n y c o p i e s a s r e q u i r e d , w h i c h w o u l d - b e t h e b e s t s o l u t i o n t o t h e p r o b l e m .
I f a c o p y o f a m o d u l e i s t a k e n e v e r y t i m e i t i s u s e d , t h e i m p l e m e n t a t i o n i s
liable to become slow and use a lot of space. For this reason most systems
take as few copies as is possible given the information known at compile
time, usually Just a single copy of each module. Because the proposed
standard for Algol 68 allows the use of its access clauses within the body
of the module text rather than the more usual approach of having a use list
at the top of the module, it is not always possible to determine at compile
time if a copy of a module already exists; in such cases a separate copy
must be taken which can cause the most appalling confusions (a good reason
f o r k e e p i n g t h e u s e l i s t a t t h e t o p o f t h e m o d u l e) .

Cemparison of the different systems

Given that a decision has beenmade to permit only one copy of each module,
what can be done about the possibility of communication between modules

using common references.

AB 4 8 p . 2 2

We w i l l e x a m i n e t h e r e l a t i v e a d v a n t a g e s a n d d i s a d v a n t a g e s o f t h e A l g o l 6 8 - R
system, the proposed standard for Algol 68, the modules systemfor the
RS Algol 68 compiler [q] and the proposed standard for Ada.

The Algol 68-R system is somewhat of an anachronism because it was the
production of this system that showed up many of these problems in the
first place. It is still worth examining because it has probably been more
heavily used than any other system and the problems users have had with it
were an important factor in the production Of the R3 module system.

T h e Algol 68-R m o d u l e system

A l g o l 6 8 - R m o d u l e s c a n o n l y b e u s e d i f t h e y a r e i n c o r p o r a t e d i n a l i b r a r y
(c a l l e d a n a l b u m) , a n d t h e y a r e d a t e s t a m p e d when t h e y a r e p u t i n t o t h e
library. The date stamping gives a total ordering within the library.
When a program is run that uses modules from the library, the total set of
modules required is obtained and they are elaborated once only in order of
their date stamps (oldest first). It is obvious that if this system iq
used to build up a library from scratch it will, of necessity, obey the
partial order. If however a module is changed we must decide if any
modules that use it must be reccmpiled. We have already said that a module
can be uhanged without affecting any other modules provided that its
external specification remains unaltel-ed. We Will now consider what
constitutes the specification of an Algol 68-R module. To allow the
complete interface checking that will be necessary to implement a safe
system it follows that if the contents of the keep list are changed (or the
modes of the elements in it) then any module that uses any of the
identifiers that have changed must be recompiled. For efficiency reasons
it is usual to specify that any change in the keep list of a module will
require the recompllation of all modules that use it. This means that an
exact description of the keep list is part of the external specification of
a module. Regrettably this is not sufficient for the external
specification in Algol 68-R; the use llst must also be included. The
necessity of including the use llst will be demonstrated by an example.

Consider compiling the following modules in the given order:

MODULE a a a =

MODULE b b b USE a a a ffi

MODULE c c c USE b b b ffi

If we recompile aaa and change its keep list we change its specification.
The old version of module aaa has to be removed from the library before
being replaced by the new. Module aaa now has a new date stamp. We have
to recompile bbb because it uses aaa but can we amend it (emending means
that the specification of the new module is the same as the old version so
that the code referred to by the module bbb can be replaced by the new code
and no module that uses bbb will have to be recempiled)? The answer is no
because the partial order tells us that we must elaborate aaa then bbb,
while unfortunately the date stamping tells us to elaborate bbb before aaa,
which is nonsense, and so we have to remove bbb from the library and then

AB 48p.23

put it in again with a new date stamp. This means that the use list of bbb
complete with date stamps has formed part of the external specification.
The module ccc must also be recompiied because bbb has a more recent date
stamp. The result of adding the use list to the specification means that
all modules that use aaa must be recompiled plus all the modules that use
the recompiled modules no matter how indirectly. It will come as no
surprise to know that the users of the Algol 68-E system have to rebuild

their libraries quite frequently.

The Algol 68-R system imposes an external total ordering on the modules and
all the recompilation problems arise because the total ordering can at
times seriously contradict the necessary partial order. If a total
ordering could be found that did not allow these gross anomalies with the
partial order the system could probably allow a more liberal regime for

amending a module.

The external total ordering does have some advantages over the proposed
standard for Algol 68 which uses the syntax of the use llst to give the
total ordering. We will see that in the proposed standard for Algol 68 any
changes in the order of the use list can alter the total ordering .~ile in
Algol 68-R this does not happen. This does not mean that the external
total ordering totally freezes the side-effects ss we will now

demonstrate.

Consider a module

MODULE aaaa =
(INT i := I)

KEEP i

Imagine one person compiles a module bbbb that uses the fact that i is

initlalised to 1.

MODULE bbbb U S E a a a a =

(.... ; INT J := i;)
KEEP

Then imagine another person compiles a modules cccc that alters i

MODULE cccc USE aaaa =
(.... ; i := 2;)

KEEP

If the external total order is aaaa, eecc, bbbb then any module (or
program) that uses Just bbbb will get the effect that the author of bbbb
intended'but if both bbbb and cccc are used it is likely that bbbb will not
have the effect the author intended because j will refer to 2 after its
assignment instead of referring to I as the author expected. It seems
likely that the author of bbbb will feel he is being punished for the sins

of the author of cccc.

The NAG Algol 68 library has been implemented in Algol 68-R and the only
serious complaint is that the library is not tolerant of changes and so
needs rebuilding too often. Experience with more naive users has shown
that unexpected side effects are also a serious problem.

AB 48p.24

The proposed standard for Algol 68

The modules required are elaborated by a reourslve procedure working from
left to right in the use lists. If a module in a use list itself has a use
list then the recursive procedure calls itself on this new use list. If a
module has no use list or its use list has been exhausted it will be
elaborated (provided that a copy is not known to exist).

This has the effect that all the use lists must be known if the total order
is to be determined and that altering the order of a use list can sometimes
alter the total order. Unexpected side-effects can only be avoided by
knowledge, self-discipline or luck.

This system has not yet been implemented, so feed-back from users is
unavailable. In the authors' opinion it is overly complex, possesses an
unlovable syntax and is much too difficult for anyone who is not an Algol 68
lawyer to understand. It is however better than the proposed Ada system
because given the complete text of all the modules involved all side-effects

can be defined.

The modular compilation system on the RS Algol 68 compiler

The RS module system wished to avoid the shortcomings of simple procedure
modulesbut without then encountering the problems with side effects that
have beset other systems. It was decided to extend simple procedure
modules so that any declarations could be made in a module (for thlsreason
they are. called DECS modules). It was also found that other statements
could be included without danger of side-effects. A DECS module can be any
sequence of legal steps provided that two restrictions are enforced at
compile-time. Firstly, the outer level of a module must not use any
reference kept in another module. Since procedures are Just code that is
obeyed whenever they are called it possible to make a routine text free of
restrictions if a second restriction, that procedures kept in other modules
are not called at the outer level, is imposed. It is essential that
routine texts be free of any restrictions so that procedures called by
programs that use the modules can communicate via non-locals that are also
kept in the modules. These restrictions are sufficient to prevent any
side-effects during elaboration, but unfortunately they prohibit the
writing of some perfectly safe constructions. For example a procedure that
does not alter any kept reference cannot be called in the outer level of
another module even though it cannot cause a side-effect.

The designers of the module system of the RS Algol 68 compiler felt that
communication during elaboration is so confusing that it is unreasonable to
expect users to have to learn enough about the problem to be sure of always
avoiding it, or to know enough about the module system to use the
communication safely. The aim was to get the same effect (on
communication) as multiple copying of modules but without the attendant

overheads.

Two RS Algol 68 systems are already in use and so far the compile-time
restrictions have not been found unduly difficult to work within.

AB 48p.25

The proposed standard for Ada

Ada allows the separate compilation of a number of different compilation
units. These include simple procedure modules (subprograms in Ada
parlance) and unrestricted pieces of program (packages).

Ada only allows for one copy of each module and definitely regards
communication during elaboration as a defect because the proposed standard
says ([I], section 10.5) that if the order of elaboration is important then
the program is erroneous, which means ([I], section 1.6) that if the
program is executed then its results are ambiguous. This is a totally
unsatisfactory solution to the problem because it will be very difficult to
check If a program is erroneous. The authors feel that such ambiguities
can best be avoided by compile-time restrictions, or failing that, the
algorlthm for the elaboration should be given.

The authors did not find this mecbaniam particularly easy to understand.

Conclusions

The authors' opinions of the relative merits of the various modular
compilation systems have already been given. We would however like to add
one more general comment. If, for efficenoy reasons, only one copy of each
module is allowed then we feel that a minimal set of restrictions should be
applied to get the same effect (on communication) as multiple copies. The
restrictions in RS modules are one such set. The inability to call
procedures in modules because there is no way of telling if they alter
references non-locally is however quite a serious restriction. If a
language contained a separate construct to describe a procedure that cannot
alter non-locals then this sort of function could be called at the
outermost level of a module. It is also possible that such a function
could be made completely free of side-effects by prohibiting the use of
reference parameters. A "side-effect free" function has a lot to be said
for it in Its own right because It would accurately reflect the
mathematical idea of a function transforming one setof values into another

set.

Aolmowled~ent,s

The authors would llke to thank Miss Susan Bond, Dr J.M.Foster and Dr
D.P.Jenkins for all their advice and help.

AB 48p. 26

R e f e r e n c e s

[I] Reference Manual for the Ada Programming Language - Proposed Standard
Document. United States Department of Defense, (1980).

[2] Woodward,P.M. and Bond,S.G., "Algol 68-R Users Guide". Her Majesty's
Stationery Office, (1975).

[3] Lindsey,C.H. and Boom,H.J., A Modules and Separate Compilation
Facility for Algol 68, Algol Bulletin, 43,(1978).

[4] Bond,S.G. and Woodward,P.M., Introduction to the 'RS' portable
compiler, RRE Technical Note, 802, (1977).

48p.27

AS48.4.3
The NAG ALGOL 68 Library

by G.S. Hodgson (NAG Central Office, Oxford)

I . Numerical Algorithms Group (NAG)

The Numerical Algorithms Group (NAG) has been In existence as a co-operative
inter-university venture since 1970.

Its aim Is to assist users of University computers by the development of a
balanced general-purpose numerical library, which Is well documented and validated.
Each "contributOr" to the Library is assigned a specific area of Numerical Analysis In
which he has responsibility for the selection, collection, collation, testing and
documentation of suitable routines. Test programs are also provided by the appropriate
contributor. All software is retested by a person other than the contributor. NAG provides
a Library Service by the provision and support of the compiled version of the NAG
Library and Its accompanying documentation. A copy of the source text of the Library is
also available for inspection at each installation.

The original versions of the Library are available In Algol 60 and in FORTRAN. In
1973 it was decided to proceed with an Algol 68 version, and this version has also been
produced as a co-operative effort between a number of University and Research centres
both in this country and In the Netherlands.

2. Implementations

The Algol 68 Library has been "implemented" on several different ranges of
computers. The table below lists the Implementations currently available and those in

progress.

COMPUTER S Y S T E M COMPILER LIBRARY MARK COMMENTS
NOW NEXT DUE

CDC 7600/CYBER CDC 2 3 -

IBM 360/370/AMDAHL FLACC 2 3 - NO Library Mechanism

ICL 1900 = 68R 3 4 NON - 1906A/S

ICL 1906A/S 68R 3 4 -

ICL 2900(8) 68RS 3 DEC 82 VME/B

TELEFUNKEN TR440 68C 2 3 -

In order to make the NAG Library available on the different compilers, it has been
necessary to restrict the features of Algol 68 which are used. The major restriCtiOns are
summarlsed below:

a) Defining occurrences of Identifiers, operators and mode Indications must precede
their applied o c c u r r e n c e s .

b) Avoid heap generators.
C) No flexible arrays (the mode STRING is a flexible array).
d) Avoid unions.
e) No fields of a structure may be of mode ROW (reference to ROW is allowed).
f) The mode ROW of ROW is not alldwed.
g) The symbol GOTO may not be omitted in jumps.
h) A mode Indication may not be the same as any operator.
i) No parallel clauses or semaphores.
j) NO vacuums.
Id Use only "worthy" characters In operator tokens.

L .

48p.28

The restriction on heap generators has been relaxed so that array generating
packages such as Torrlx can be Included. However, we have been careful only to Include
heap generators In a very restricted number of array generating procedures. A distinction
has been made In the use of such procedures, that is:

a) use of the heap In a stack oriented manner (level 1),

and

b) use of the heap with a garbage collector (level 2).

In this way, we believe that It may be possible to provide level 1 facilities on a
compiling system which dOes not provide a built In garbage collector.

No use has been made of unions at Mark 3, although It Is Intended to use unions
in some procedure specifications at Mark 4. This use will be restricted only to the formal
parameters of a limited number of routines which are directly called by the user. It Is
not Intended to manipulate unions within the .bodies of routines.

With these restrictions It has been possible to translate between dialects In an
automated manner, with one exception. It is sometimes necessary to make very limited
use of machine coding. For efficiency, it Is desirable to be able to plant "lnllne" code.
The way this is done varies between the different compilers. The CDC compiler provides
tho most flexible system - Inllne operators can be defined: in 68R the code secUons
have to be included explicitly; In 68RS some Inllne operators are provided but new ones
cannot be defined. Hence some tailoring of the source code is necessary.

Each new implementation requires the running of test programs and the checking
of their results - about 3 man months work. But there Is a further and more serious
delay in Introducing further Implementations. Dialect conversion Is automatic, but It has
not been found possible to automate the conversions necessary because of the diverse
Hbrary mechanisms.

The existing mechanisms are Incompatible:

a) CDC - a top down mechanism defining a prelude with automatic Inclusion of
precomplied N A G routines at each applied occurrence. There is no
protection between items within the prelude.

b) FLACC - no library mechanism is currently available, the operating system has
to be extended to provide primitive source text Inclusion of NAG

routines.

c) 68R - a bottom up mechanism with prOteCtion of modules from one another
and from the particular program.

d) 68RS - both a top down and bottom up mechanism, however the bottom up
mechanism has restrictions to exclude modules with side effects. This
excludes a very limited number of NAG facilities.

(~) 68C - a combination of top down and bottom up facilities. However the bottom
up lacilities are very primitive and the user is responsible for Including
a dummy specification for each library routine used in the particular

program.

With tllo~o diverse mechanisms, which all differ from the standard mechanism
rccornmended by Lindsey & Boom [AS 43.pp 19-53]. further restrictions are required to
make it possible to adapt (though not by automatic means) the library source code to
the dilferent mechanisms. We summarise the major restrictions:

I~ Definition Modules must be side-effect free. That is:

AB 4 8 p . 2 9

a) No procedures or user-def ined operators may be cal led, except within
rout ine texts.

b) No labels may be declared in the outermost level.

c) No public item which is a re ference (or a structure, array or union
containing a reference) may be used in a definit ion module other than
the one in which it was declared, except within a rout ine text.

With such restr ict ions, the order of invocat ion of such definit ion modules Is
i r re levant to the user.

2) All ACCESSIng of modules must be suitable for accessing in the form:

ACCESS A ACCESS B

This means that clashes of identi f iers will be resolved in a range structured
manner - the identi f iers PUBlished in B will take precedence over those of A.
Contr ibutors must therefore take care that Items are not publ icly declared twice
(possibly with di f ferent specif icat ions) without good cause, s ince no check can be
made that an unfortunate order of accessing of modules does not result in a
change of Indent i f icat ion (and hence meaning) of such items.

3) All accessing Of modules must be done at the head of a def ini t ion module.

This ensures that only one invocation of a module can occur ; a contr ibutor Is not
allowed to generate mult iple invocat ions by for example ACCESSing a module
within a rout ine text (see Lindsey and Boom AB 43 pp. 22, 23).

4) The standard mechanism only permits PUBlic ACCESSing of a module to publish
aJ._l_ the PUBlicly declared items - select ive publ icat ions using the keepUst
mechanism of 68R and 68RS is not allowed.

5) All o0jects defined at the outermost level of a module (i.e. not local to a rout ine
text) must follow standard NAG naming convent ions to avoid conf l ict ing names (all
such objects are compl ied together in the CDC prelude).

These restr ict ions only make it possible to adapt the l ibrary source code for the
dlffet~ent mechanisms, the syntact ical form of the l ibrary required for the di f ferent
mechanisms varies considerably. Hence three di f ferent source versions of the NAG
Library exist . - CDC, 68R and 68RS. Other implementat ions have to be begun from
whichever of ~ e s e implementat ions provides the closest s ta r t i ng point.

3. Scope of the Library

The Mark 3 Algol 68 Library provides, with very l imited except ions, facil i t ies
equivalent to those of the Mark 5 FORTRAN Library, with addit ional material In some
chapters based on Marks 6. 7 or 8 Of. the FORTRAN Library. Also included are some
facil i t ies not avai lable in other language versions of the Library (e.g. mult iple length
integer and rational ar i thmetic packages and the vector and matrix operat ions package
- TorrJxL

4. Acknowledgement

NAG i s most grateful to the Royal Signals and Radar Establ ishment. Malvern for
a signi f icant contr ibut ion to the funding of co-ord ina t ion for. and contr ibut ion to. the
Mark 3 Algol 68 NAG Library. Our thanks are also due to contr ibutors in university and
research centres for their cont inuing voluntary efforts.

AB 4 8 p . 3 0

Summary of the contents of the NAG Algol 68 Ubrary, Mark 3

The NAG L i b r a r y is O r l s n i s e d i n t o c h a p t e r s , e a c h d e v o t e d t o a b r a n c h o f n u m e r i c a l c o m p u t a t i o n . Each

c h a p t e r h a s a o n e - o r t h r e e - c h a r a c t e r name and 8 t i t l e , b a s e d o n t h e ACM n o d t f i o d ~ A R R C l a s s i f i c a t i o n

I n d e x . The c h a p t e r s i n t h e Mark 3 L i b r a r y a r e :

A02 - CORPLKX ARITHJ~TIC

A04 - nz l~qDKD A R r l H I a T I C

CO2 - Z~06 OF PGLIMOMI/d.S

COS - ROOTS ~ ONE OR MORE T R A R ~ T A L EQUATIONS

C06 - SUM/ATIQN OF SERIES
!)01 - QUADRATURK
DO2 - 0BDIMAM7 D I F I ~ T ' I t d , RQUATI(N4S
D04 - NURTCAL D I ~ ' r I A T I G ~ I
D05 -]]¢rBBRAL BQUkTIGNS
]B01 - IN'I~PO[JLTION
K02 - CURVE AND SUI~ACK I;'ITTIN8
K04 - MINIMISIRG OR MAXIMISII~ A PUNCTION

F01 - I i ~ l ~ [OIq~BATISNS, I N C L ~ I N 0 I N V A S I O N

F02 - RIGENVALUKS Ah~ KIG~iVKCTORS

F03 - ~'nmUn4AMTS
F04 - SIMULTAffiKOUS LINEAR BQUATIONS
F05 - GR'fll0GOIqM,ISATION
GO1 - S I I ~ , R CALCOLATI(M~S ON STATISTICAL DATA

G02 - C~BemJLTION ~ nWml~$lON ,~qALTSIS
G05 - RANDOM N U ~ t GRq~ATORS

H - OPERATIONS RESKARCH

N0I - SORTING

P01 -] m R TRAPPINg

S - A P P R ~ [I R A T I O N 8 OF SPKCIAL MUNCTIONS

T01 - VRCI10R AI~ MA']IffX OPIRAT][ONS, TOMltlX

X02 - NACH/NK CONSTANTS
X03 - IhMBRPIODUCTS

Each r o u t i n e name h a s s i x c h a r a c t e r s . The f i r s t t h r e e d e m o t e t h e c h a p t e r oz s u b o h a p t e ¢ s a d t h e s i x t h

and l a s t c h a r a c t e r i 8 'B~ i n t h e s t a n d a r d p r e c i s i o n v e r s i o n o f t h e A l g o l 68 L i b r a r y e.g~ D02ADB.

T h i s d o c u m e n t l i s t s t h e r o u t i n e s i n t h e NAG R a r k 3 A l i o l 6 8 L i b r a r y , c h a p t e r b y c h a p t e r . R o u t i n e s

w h i c h w e r e i n t z o d u n e d i n t o t h e L i b r a r y a t M a r k S a r e m a r k e d w i t h a n a s t e r i s k (a) . T h e r e e r e 2 9 8

r o u t i n e s a c c e s s i b l e t o u s e r s , o f w h i c h 11 v i i i b e w i t h d r a w n a t M a r k 4 a n d a r c s o t i n c l u d e d i n t h i s

l i s t , t h e y h a v e b e e n s u p e r s e d e d by i m p r o v e d r o u t i n e s w h i c h a r e a l r e a d y i n t h e L i b r a r y .

T h i s d o c u m e n t i s d e s i s n e d o n l y t o l i v e an i n d i c a t i o n o f t h e c o n t e n t s o f t h e L i b r a r y . P e r d e t a i l e d

g u i d a n c e o n t h e c h o i c e o f a s u i t a b l e r o u t i n e , p l e a s e r e f e r t o t h e C ~ t a p t o ¢ l n t z o d n n t t o a o i n t h e N £ e

& 1 s o l 6 8 L i b r a r y M e n u s 1 . E a c h r o u t i n e i s c o m p l e t e l y s p e c i f i e d b y a r o n t i m o d o e u m n J t i n t h e L i b r a r y

M a n n c l .

F o r f u r t h e r i n f o r m a t i o n a b o u t t h e NAG L i b x a r y a n d t h e

NAG L i b r a r y S o , v i c e , p l e a s e c o n t a c t t h e L i b r a r y

S e r v i c e C o - o r d i n a t o r a t :

N u m e r i c a l A l g o r i t h m s Group L i m i t e d ,

NAG C e n t r a l O f f i c e ,

M a y f i e l d R o u s e .

256 B a n b u r y Road ,

O x f o r d 0X2 7DEc

U n i t e d K i n g d o m .

T e l : N a t i o n a l 0865 511245

I n t e r n a t i o n a l +44 865 531245

T e l e x : 83354 NAG U [G

N o r t h A m e r i c a n r e a d e r s n a y f i n d i t n o r a

conventont to contact:

The C o l p a n y S e c r e t a r y ,

N u e r ~ o a l A l | o r i t b J n S Group (USA) I n s ,

1250 Grace C o u r t ,

Dormer S ~ovew
I l l i n o i s 6 0 5 1 6 ,

U S A .

T e l : (312) 97/1 2337

AB 48p.31

A02 - COMPLBXAitrI3111TIC
S q u a r e root o f a c o m p l e x numb er A02AAB*

A04 - ~ N t I I ~ T I C

O p e r a t o r s f o r m u l t i p l e - l e n g t h a r i t h m e t i c :

i n t e g e r a r i t h m e t i c AO4 AABe

r a t i o n a l a r i t h m e t i c AO4ABB e

C02 - Z~tOS ~ POLYNOI/IALS

A l l z e r o s o f a p o l y n o m l a l , b y G r a n t and N i t c h l n ' a m e t h o d :

c o m p l e x c o e f f i c i e n t s C02ADB e

r e a l c o e f f i c i e n t s CO2~J~*

COS - i~00TS OF O N K O R I ~ R E T R A N S C ~ D ~ r r A L KQUATIGNS

Z e r o o f a c o n t i n u o u s f u n c t i o n o f one v a r i a b l e :

b y l l n o a r i n t e r p o l a t i o n , e x t r a p o l a t i o n and b i s e c t i o n COSAAB

b y h y p e r b o l i c i n t e r p o l a t i o n COSAB3~

b y b l s a c t l o n C05ACB

S o l u t i o n o f a r y s t e u o f N n o w - l i n e a r e q u a t i o n s i n N v a r i a b l e s (s e e a l s o C h a p t e r K04):

u s i n g f u n c t i o n v a l u e s o n l y COSNAB e

u s i n g f i r s t d e r l v a t i v e 8 COePAB e

C06 - SUNNATIONOF SEIt lES

F i n i t e F o n r i e r t r a n s f o r m s , b y C o o l e y - ~ u k o y a l g o r i t h m :

2 m r e a l d a t a v a l u e s C06AAB

2 m c o m p l e x d a t a v a l u e s C06ABB e

a r b i t r a r y number o f c o m p l e x d a t a v a l u e s , w i t h i n a m u l t i - v a r i a b l e t r a n s f o r m C06ADa*

C i r c u l a r c o n v o l u t i o n o f two r e e l v e c t o r s o f p e r i o d 2 u C0~ACB e

DO1 - QUADRATURE

G a u a s i a n q u a d r a t u r e w i t h a s p e c i f i e d number o f p o i n t s :

o n e - d i m e n s i o n s 1 i n t e g r a l DO1BAB

c o m p l e x con tou r or l i n e i n t e g r a l DOIBDB

m u l t i - d i m e n s i o n a l i n t e g r a l o v e r p r o d u c t r e 8 i o n DOiFBqB

I n t e g r a l o f a f u n c t i o n d e f i n e d b y d a t a v a l u e s o n l y , b y G i l l and H i l l e r ' a m e t h o d DOIGAB

P o m a t o f s t r o c t u r e s t o d e f i n e i n t o | r a t i o n r u l e s DOiQPB e

G l o b a l v a r i a b l e s f o r r e f e r r i n g t o l n t e g z a t i o n s t r n c t u r e s D O l E

S e r v i c e r o u t i n e s f o r s t r u c t u r e s d e f i n i n g i n t e g r a t i o n r u l e s :

t o o b t a i n c l o s e s t n - p o i n t r u l e DOIOJ~B

t o o b t a i n mapped s e t o f w e i g h t s and a b s e i s s n e DOIQBB

I)02 - ~DINARY D I F I ~ q T I A L BQUATIONS

I n i t i e I v a l u e p r o b l e m s f o r a s y s t e m o f O . D . E . a :

N e r s o n ' 8 (J h m g e - g u t t 8) n e t h o d o o v e r one s t e p DO2AAB

o v e r a r a n g e DO2ABB

g r o j h ' a ~ e t h o d DO2A~

G e a r * s m e t h o d f o r s t i f f s y s t e m s D02AJB

D o u n d a r y v a l u e p r o b I o m s f o r a s y s t e m o f O . D . E . s :

T w o - p o i n t b o u n d a r y v a l u e p r o b l e m DO2ADB

DO4 - NGMERICALDIFPmt~qTIATION

D e r i v a t i v e s up t o o r d e r 14 of a f u n c t i o n o f a s i n g l e r e a l v a r i a b l e DO4AAB

N o r m a l i s e d T a y l o ~ c o e f f i c i e n t s o f a f u n c t i o n o f a s i n g l e v a r i a b l e :

a t a p o i n t i n t h e c o m p l e x p l a n e DO4ABD

a t a p o i n t on t h e r e a l a l i a D04ACB

DOS - INTEGRAL E~UAT/ONS

L i n e a r n o n - s i n g u l a r P r e d h o l m e q u a t i o n of 2 n d ' k i n d DO$CAB

E01 - INT~POLATION (s e e a l n e C h a p t e r E02)

I n t e r p o l a t e d v a l u e s :

one v a r i a b l e , d a t a a t e q u a l l y s p a c e d p o i n t s , by E v e r e t t ' s f o r l u l e

d a t a a t u n e q u a l l y s p a c e d p o i n t s , by f i t t i n g c u b i c s p l l n e

two v a r i a b l e a , d a t a on r n e t a n a u l e r g r i d , b y f i t t i n g b l - e u b l c 8 p l i n e

E02 - L~KV~ AND S U m P r f r I N G

Min imax c u r v e f i t b y p o l y n o m i a l s

L e a s t s q u a r e s c u r v e f i t :

b y p o l y n o m i a l s , a r b i t r a r y d a t a p o i n t s

a r b i t r a r y d a t a p o i n t s , p o l y n o m i a l f a c t o r s a y be a p o © I f l e d

s p e c i a l d a t a p o i n t s (i n c l u d i n g I n t e r p o l a t i o n)

b y c u b i c a p l l n e 8 (i n c l u d i n g I n t e r p o l a t l o n)

E v a l u a t i o n o f f i t t e d f u n c t i o n s :

p o l y n o m i a l i n one v a r i a b l e , f r om C h e b y a h e v s e r i e s f o r m

c u b i c s p l i n e , a s c o m p u t e d b y EO2BAB, f u n c t i o n o n l y

f u n c t i o n and d e r i v a t i v e s

d e f i n i t e i n t e g r a l

D i f f e r e n t i a t i o n and i n t e g r a t i o n o f f i t t e d f u n c t i o n s :

d e r i v a t i v e o f p o l y n o m i a l i n C b e b y s h e v s e r i e s form

i n t e g r a l o f p o l y n o m i a l i n Chebyahev s e r i e s r a m

E04 - NININISING OR NAXINISING AFUNCTION

(a) F u n o t l o n o f 8 S i n g l e V a r i a b l e

Minimum o f a F u n c t i o n o f One V n e i a b l e :

u s i n g f u n e t l o n v a l u e s o n l y

u s i n g f i r s t d e r i v a t i v e

(b) F u n c t i o n o f S e v e r a l V a r i a b l e s

U n c o n s t r a i n e d n l n i n u n (e a s y - t o - u s e r o u t i n n e) :

u s i n g f u n c t i o n v a l u e s o n l y , q u a s i - N e w t o n a l g o r i t h m

u s i n g f i r s t d e r i v a t i v e s , q u e a i - N e w t o i a l g o r l t k m

m o d i f i e d Newton a l g o r l t h n

u s i n g f i r s t and s e c o n d d e r i v a t i v e s , m o d i f i e d Newton a l j o r i t i m

Minimum s u b j e c t t o s i m p l e b o u n d s on t h e v a r i a b l e s (e a s y - t o - u s e r o u t i n e s) :

u s i n g f u n c t i o n v a l u e s o n l y , q u a s i - N e w t o n a l g o r i t h m

u s i n g f i r s t d e r i v a t i v e s , q u a s i - N e w t o n a l g o r i t h m

m o d i f i e d Newton a l g o r i t h m

u s i n g f i r s t and s e c o n d d e r i v a t i v e s . , m o d i f i e d Newton a l g o r i t h m

Minimum s u b j e c t t o a / m p l e b o u n d s on t h e v a r i a b l e s (c o m p r e h e n s i v e r o u t i n e s) :

u s i n g f u n c t i o n v a l u e s o n l y , q u a s i Newton a l g o r i t h m

u s i n g f i r s t d e r i v a t i v e s , q u a s i Newton a l g o r i t h m

m o d i f i e d Newton a l g o r i t h m

u s i n g f i r s t and s e c o n d d e r i v a t i v e s , m o d i f i e d Newton a l g o r i t h m

U n c o n s t r a i n e d m i n l m u m o f a sum o f s q u a r e s :

u s i n g f i r s t d e r i v a t i v e s , N e r q u a r d t ' s m e t h o d

S e r v i c e r o u t i n e s :

f i n i t e - d i f f e r e n c e i n t e r v a l s f o r e s t i m a t i n g f i r s t d e r i v a t i v e s

c h e c k u s e r ' s r o u t i n e f o r c a l c u l a t i n g f i r s t d e r i v a t i v e s of f u n c t i o n

c h e c k u s e r ' s r o u t i n e f o r c a l c u l a t i n g s e c o n d d e r i v a t i v e s o f f u n c t i o n

FOi - MATRIX OPERATIONS, INCLUDING INVERSION

M a t r i x i n v e r s i o n :

a c c u r a t e i n v e r s e ,

c o m p l e x m a t r i x

r e a l m a t r i x

r e a l s y m m e t r i c band m a t r i x

r e a l s y u m e t r i c p o s i t i v e - d e f i n i t e b a n d m a t r i x

r e a l s y s m e t r i c p o s i t i v e - d e f i n i t e m a t r i x

AB 48p. 32

BOIABB

B O I A I I

EOIACB

K02ACB

KO2AIle

K02A|Be

K02APB*

KO2BAB*

K02AI~*

EO2BBS*

B02BCB •

K02BDBe

~ 0 2 N B *

B02AIB*

B04AB~Be

E 0 4 B ~ e

HO4CGD*

EO4DIm*

E041NWBe

E O 4 ~ 8 *

KO4JAB*

E04gAB •

EO4KCB*

HO4LAB*

KO47BB •

B0412~*

EO4KIN3e

E04LBB*

E04GAB*

EO4NBB*

E04HCB*

E0dI~Be

F01EDB

F01EBB

F 0 1 ~ B

F O l ~

F 0 1 ~ B

AB 48p.33
approximate i n v e r s e ,

complex m a t r i x 701BC8

r e a l m a t r i x 701RAB

r e a l symmetric band m a t r i x F01B~B

r e a l symmetric I m s l t i v e ~ l c f i n i t o band m a t r i x FO1BGB

r e a l symmetric p o s i t l v e - d e f i n i t e ma t r i x F01KKB

Pseudo i n v e r s e of a z e a l mxn m a t r i x FO1BLBe

G c n e r a l l s e d or pseudo i nve r se of ATA. where A i s a r e a l sum ma t r i x FO1B~*

Mat r ix f a c t o r i s a t i o n s (see a l s o Chapter 7 0 3) :
Rank and QR f a c t o r l a a t i o n of a r e a l mum m a t r i x , wi th column p i v o t i n g 7 0 1 ~ *

Balance a m a t r i x by d i agona l s i m i l a r i t y t r a n s f o m a t i o n a :
complex m a t r i x F01FBBe

r e a l m a t r i x 7017&B*

I o d n c t i o n of ma t r i c e s to condensed fox~t by s i m i l a r i t y t r a n s f o r m a t i o n s :

complex ma t r i x to upper Hcsscnberg form 701UpBe

complex H e m i t t a n m a t r i x to r e a l t r i d i a | o n a l form 701VI~e

r e a l m a t r i x to upper Hesscnberg form 701SPB*

r e a l symmetric ma t r i x to t r l d l a g o n a l form.
f u l l s to rage mode FO1AGB

f u l l s t o r a g e mode, accumula t ing product of t t a n s f o m a t i o n s FO1AJ'B

rowwtso s to rage mode FOITI~e

r e a l symmetric band m a t r i x to t r l d l a g o n a l r a m
d iagona l s torago mode FO1TSBe

rovv t s e s to rage mode FO1TIB*

B a c k t r a n s f o r m a t i o n of c i g e n v e c t o r s from those of reduced forms (see a l s o Chapter P02) :

r e a l symae t r i c m a t r i x , a f t e r r e d u c t i o n to t r i d i a g o n a l form,

f u l l s to rage mode FO1A~

Mat r ix and v e c t o r a r i t k a e t i © (see a l s o Chapter TOI):

C~plOX case .
m a t r i x a d d i t i o n 701DgBe

m a t r i x i n i t i a l i s a t i o n F01CgB
m a t r i x m u l t i p l i c c t i o n F01D3Be

m a t r i x nom 701C6B

m a t r i x s u b t r a c t i o n 701D3B*

m a t r i x t r a c e 701C6B

m a t r i x t ranspose FOIC3B

u n i t ma t r i x FO1C3B

v e c t o r a d d i t i o n F01C9Be

v e c t o r d i v i s i o n 701C9B*

v e c t o r i n i t i a l t a a t t o n 701C3B

v e c t o r m u l t i p l i c a t i o n 701C9B0

v e c t o r norm 701C6B

v e c t o r s u b t r a c t i o n 701C9B0

i n t e g e r case ,
ma t r i x a d d i t i o n 701D1B

m a t r i x i n i t t a l i s a t t o u FO1C1B

ma t r i x m u l t i p l i c a t i o n F01DIB
ma t r i x norm F01C4B

m a t r i x s u b t r a c t i o n FOID1B

m a t r i x t r a c e FO1C4B

ma t r i x t ranspose FOIC1B

• u n i t ma t r i x FOIC1B

v e c t o r a d d i t i o n F01C7B

v e c t o r i n i t i a l i z a t i o n 701C1B

v e c t o r m u l t i p l i c a t i o n 701C7B
v e c t o r h e m 701CAB

v e c t o r s u b t r a c t i o n 701C7B

r e a l case .
mat r ix a d d i t i o n FOID2BO

m a t r i x I n l t i a l l s a t i o n F01C2B

m a t r i x m u A t i T l l e a t l o n

m a t r i x norm

m a t r i x s u b t z n o t l o n

m a t r i x t r a c e

m a t r i x tramalmse

u n i t ma t r i x

v e c t o r a d d i t i o n

v e c t o r d i v l c l o n

v e c t o r I n ~ I t i a l l s a t l o n

v e c t o r m u l t l p l i o a t l u n

vootoz no~t

v e c t o r s u b t r n e t i o n

702 - BIORqVALM8 AND EIONNSCTOU

Matr ix e i s e n v a l u e problams (b l ack box r o u t i n e s) :
ooetplox m a t r i x , a l l e t g a n v a l u e c and (o p t i o n a l l y) o l g e n v c o t o r s

s e l e c t e d e lgonvs lue8 (Xp,~p+l ~q) and c igonvoe to r s

8o loc tad e i g c n v t l u o s (~ X ~) and e t g o n v a c t o t c

complex H a m t t t a n n a t r i x . a l l o igcnva lucs and (o p t i o n a l l y) c i s e n v o c t o r s

r e a l a m t t l x , a l l o igonvalnos and (o p t i o n a l l y) c i g c n v e o t o r s

s e l e c t e d o igcnva lucs (kp.Xp+l , ~q) and o igonvoe tors

s e l e c t e d o igonva lues ~ h ~) and c lgenvee to~s

r e a l symmetric m a t r i x , a l l e i a e n v a l n a s
s e l e c t e d c iganva luos and o igonveo to r s

Matr ix c igcnva luo problmsa (c p o c i a l i s o d r o u t i n e 8) :

cemTlex m a t r i x , 811 e l a e n v a l u e s a ld (o p t i o n a l l y) e i g e n v c c t o : s ,

a f t e r roduo t lon to upper Hcssonbors r a m by F01UPB. by I l l a l go r i t hm

complex upper Hosscnbe:g m a t r i x .
s e l e c t e d e l g e n v e c t o r s , by inve r se i t e r a t i o n

r e a l m a t r i x , a l l c l g c n v a l u e s and (o p t i o n a l l y) c i g c n v c c t o r s .

a f t e r r e d a c t i o n to hi , par Hnaseaberg form by F O I ~ . by QIt a l g o r i t l m

r e a l upper Hcssonbe:g m a t r i x .
s e l e c t e d e i g c n v o c t o : s , by inve r se i t e r a t i o n

r e a l symmetric m a t r i x , a l l e i g e n v a l u c s and (o p t i o n a l l y) e i g e n v e c t o t s ,

a f t e r r e d u c t i o n to t r l d l a s o n a l form by F01ATB. by OL a l g o r i t h m

r e a l s3mmetric t r i d i a a o n s l m a t r i x .

s e l e c t e d c l g c n v s l n e s (g ' ~ and e i | c n v e e t o r a ,

by b i s e c t i o n and i n v e r s e i t e r a t i o n

r e a l symmetric band m a t r i x ,
s e l e c t e d e t g e n v o c t o r s , by i nve r se i t e r a t i o n

B a c k t r a n s f o r m a t i o n of c i g e n v c c t o r s from those of reduced forms and n o m c l i s a t i o n :

complex m a t r i x , a f t e r r e d u c t i o n to Hessenbe r | form

complex H c r m l t i a n m a t r l x , a f t e r r e d u c t i o n to t r i d l t g o n a l f o m

r e a l i m t r i x , a f t e r r e d u c t i o n to Hcsscnborg form

tea1 symmetric m a t r i x , a f t e r r e d u c t i o n to t r l d i a g o n a l form,

r e w r i t e a to raga mode
Order ing of c l g c n v e l u e s and (o p t i o n a l l y) c i g e n v e c t o r s :

complex m a t r i x .

by moduli

by r e a l p a r t s

t e a l m a t r i x ,

by n o d u l i

by t e a l p a r t s

F03 - D~J / INANTS
I b t a m i n a n t e v a l u a t i o n (b l a c k box r o u t i n e s) :

complex ma t r i x

r e a l m a t r i x

r e a l symmetric band ma t r i x
r e a l symmetric p o s i t i v e - d e f l n i t e ma t r i x

AB 4 8 p . 3 4

701D2~

F 0 1 ~ B
F 0 1 ~

FOICSB

P01C2B

F01C2B

F01CSB

P01C8B

FO1C2B

POIC8B

POICSB

7OlC8n

FO2GAB*

FO2GCB*

FO2G~8*

¥02HAB*

FO2EABc

FO2KCB*

FO2EDB*

PO2AAB

FO2ACB

FO2UAB*

F02UCB*

F02SAB*

F02SCB*

F02TAB*

F02ASB

F02TIJ*

F02UPB*

F02VPB*

F02SPB*

FO2TIm*

F021UB •
F02UI~O

FO2SJB •

F02SI~*

F03ADB

F0$AAB

F0$APB

FO3ABB

AB 48p.35

z e a l s y m m e t r i c p o s i t i v e - d e f i n i t e b a n d m a t r i x

LU - f a © t o r i n a t l o n and determiunn~:

c o m p l e x m a t r i x

r e a l m a t r i x

LLT - f a © t o z l s a t i o n and d e t e r w l n e n t :

z e a l s y m m e t r i c p o s i t i v e - d e f i n i t e u a t z l x

r e e l s y m m e t r i c p o s i t i v e - d e f i n i t e b a n d m a t r i x

LDL T - f a c t o r l s s t l o n and d o t e z m l u n n t :

r e a l s y m m e t r i c b a n d m a t r i x

F04 - SIHULTAhq~0US LINEAR]K~UAT10NS

S o l u t i o n o f s i m u l t a n e o u s l i n e s z e q u a t i o n s (b l a c k b o x r o u t i n e s) :

• t o e . r a t e s o l u t i o n ,

c o m p l e x m a t r i x

r e a l m a t r i x

z e a l s y m m e t r i c b a n d m a t r i x

r e a l s y m m e t r i c p o s / t l v e - d e f l n i t e b a n d m a t r i x

z e a l s ~ m s o t z i e p o s l t i v e - d e f i n i t e m e t z l x

a p p r o x i m a t e s o l u t i o n ,

c o m p l e x m a t r i x

real m a t r i x

r e a l s y m t e t r i c b a n d m a t r i x

r e a l s y m m e t r i c p o s i t i v e - d e f i n i t e b a n d m a t z l x

r e a l s y m m e t r i c p o s i t i v e - d e f i n i t e m a t r i x

S o l u t i o n o f s i m u l t a n e o u s l i n e a r e q u a t i o n s (g e n e r a l p u r p o s e r o u t i n e s) :

a c c u r a t e s o l u t i o n ,

c o m p l e x m a t r i x

z e a l m a t r i x

z e a l s y m m e t r i c band m a t r i x

r e a l s y m a e t r i c p o s i t i v e - d e f i n i t e b a n d m a t r i x

r e a l s y m m e t r i c p o s i t i v e - d e f i n i t e m a t r i x

a p p r o x i m a t e s o l u t i o n .

c o m p l e x m a t r i x

r e a l m a t r i x

r e a l s y m m e t r i c b a n d m a t r i x

r e a l s y m i e t r i c posit/ve-definlte b a n d a a t z i x

z e a l s ~ e t r i c p o s i t i v e - d e f i n i t e m a t r i x

S o l u t i o n o f s i m u l t a n e o u s l i n e a r e q u a t i o n s (s p e c i a l p u z p o s e r o u t i n e s) :

c o m p l e x m a t r i x

r e a l m a t r i x

r e a l s y m m e t r i c b a n d m a t r i x

r e a l s y m m e t r i c p o s l t i v e - d e f l n i t e b a n d m a t r i x

r e a l s y m m e t r i c p o s i t i v e - d e f i n i t e m a t r i x

L e a s t - s q u a r e s s o l u t i o n o f m r e a l e q u a t i o n s i n n u n k n o w n s :

rankffin° m~n, a c c u r a t e s o l u t i o n (b l a c k b o x r o u t i n e)

r a n k S • , l e a s t - s q u a r e s s o l u t i o n i f rankffin,

o t h e r w i s e m i n i m a l l e a s t - s q u a r e s s o l u t i o n

F0$ - ORTHOGONALISATION

S c h m i d t o r t b o | o n a l i s a t i o n o f n v e c t o r s o f o r d e r m

N o r n a l i s a t i o n o f e i g e n v e c t o z s :

c o m p l e x m a t r i x

r e a l m a t r i x

GO1 - SIMPLE CALCULATIONS GN STATISTICAL DATA

S i m p l e d e s c r i p t i v e s t a t i s t i c s , one v a r i a b l e

f r o m raw d a t a

f r o m f r e q u e n c y t a b l e

S i m p l e d e s c r i p t i v e s t a t i s t i c s , two v a r i a b l e s , f r o m raw d a t a

F r e q u e n c y t a b l e f r om raw d a t a

F ~ A ~

F ~ A I ~

F ~ A F B

F ~ A I ~

F~A~

P~AQB

FO4CDB

FO4CBB

FO4(XB

F04C~

p~ei~

F ~ C ~

F ~ C A B

F ~ B

F ~ C ~

F ~ C K B

F ~ D ~

F ~ D B

F ~ D S B

F 0 4 D B

F ~ D ~

F ~ D C B

F ~ D ~

F ~ B

F ~ D G R

F ~ D ~

F ~ K [B

P ~ B B

F ~ B

F ~ B ~

F ~ B

F 0 4 ~ *

FO4AUB*

FOSAAB*

FOSBAB*

FOSBB~a

GO1AAB•

G01AI~e

GO1ABB •

GO1AEBe

O n e - u n y a n a l y s i s o f v a r i a n c e

Two-way e o n t l n g o n o y t a b l e a n a l y s i s

(]02 - COmumATTONA~RBURESSIONANALYSIS

P e a r s o n p r o d u c t - • a n e n t o o t r e i n t i o n c o e f f i c i e n t s :

• 11 o r • s u b s e t o f v a r i a b l e s • no m i s s i n g v a l u e s

o n e • v i n e t r e a t m e n t o f h i • s i n | v a l u e s

p a i r w i e e t r e a t m e n t o f m i s s i n g v a l u e s

~ C o r r e l s t i o n - l i k e ' o o e f f i e i n u t s (e e l • m i n t e d • b o u t z e r o) :

• I I o r • s u b s e t o f v a r i a b l e s , no n i s e i • s v a l u e

o s s e w i n e t r e a t m e n t o f m i s s i n g v a l u e s

p a i r m i s e t r e a h a e n t o f m i n s l n | v s l u n e

K o u d a l l ' s a n d / o r S p a n • a n n ' S n o n - p a r a m e t r i c r i n k o o r z e l a t i o n c o e f f i c i e n t s :

no m i s s i n g v a l u e s , o v e r w r i t i n g i n p u t d • t •

p r e s e r v i n g i n p u t d a t a

c a e e w i e e t r e a t m e n t o f m i s s i n g v a l u e s , o v e r w r i t i n g i n p u t d a t a

p r e s e r v i n g i n p u t d a t a

p a i r w i s e t r e a t m e n t o f m i s s i n g v a l u e s

S i m p l e l i n e a r r e g r e s s i o n w i t h c o n s t a n t t e r m :

no m i s s i n g v a l u e s

m i s s i n g v a l u e s

S i m p l e l i n o • z z e g r e e s i o n w i t h o u t c o n s t a n t t e r m :

no m i s s i n g v a l u e s

m i s s i n g v a l u e s

I / u l t l p l e l i n e a r z e a r e s s i n n w i t h c o n s t a n t t e r m

M u l t i p l e l l n o e z r e g r e s s i o n w i t h o u t c o n s t a n t t e r m

Sez~rioe r o u t i n e s f o r n l t i p l e l i n e a r r e g r e s s i o n :

s e l e c t e l e m e n t s f r om v e c t o r s and m e t r i © e s

r e - o r d e r o l r m e n t e o f v e c t o r s e n d m a t r i c e s

G O $ - RANDONNUImERGH~tATORS

P s e u d o - r a n d o m z e a l n m s b • r s f r om c o n t i n u o u s d i s t r i b u t i o n s :

u n i f o z l d i s t r i b u t i o n o v e r (O . O , l . O)

u n i f o r m d i s t r i b u t i o n o v e r (a , b)

e x p o n e n t i a l d i s t r i b u t i o n

l o g i s t i c d i s t r i b u t i o n

Norma l d i s t r i b u t i o n w i t h mean a and s t a n d a r d d e v i a t i o n b

l o g n o r m a l d i s t r i b u t i o n

C • u e h y d i s t r i b u t i o n

Gamma d i s t r i b u t i o n w i t h p a r a m e t e r s (g , h)

C k i - s q u a z e d i s t r i b u t i o n

S t u d e n t ' s t - d i s t r i b u t l o n

S a e d e o o z ' s F - d l s t r l b u t l o n

B e t a d i s t r i b u t i o n o f t h e f l z s t k i n d

B e t • d i s t z t b u t i o n o f t h e s e c o n d k i n d

P s e u d o - r e • d o n i n t e g e r f r om o n i f o r n d i s t r i b u t i o n

P s e u d o - r e • d o n B o o l e • f l v a l u e

P e e u d o - r • u d r m i n t e g e r f r om r e f e r e n c e v e c t o r

S e t up r e f e r e n c e v e c t o r f o r g e n e r a t i n g p s e u d o - t e n d o n i n t e g e r s :

u n i f o r m d i s t r i b u t i o n

P o i s s o n d i s t r i b u t i o n

b i n o n i n l d i s t r i b u t i o n

n o $ • t l v e b i n o m i a l d i s t r i b u t i o n

h y p e r g e o n e t z i e d i s t r i b u t i o n

S e t u p r e f e r e n c e v e c t o r f r o m s u p p l i e d c u m u l • t l v e d i s t r i b u t i o n

f u n c t i o n o r p r o b a b i l i t y d i s t z l b u t l o n f u n c t i o n

I n i t i a l l s e r andom number g e n e r a t i n g r o u t i n e s ,

t o g i v e s r e p e a t a b l e s e q u e n c e

Save s t a t e o f r andom number g e n e r a t i n g r o u t i n e s

R e s t o r e s t a t e o f random number g e n e r a t i n g r o u t i n e s

AB 4 8 p . 3 6

6olAi28 •

GO1APB•

GO2BGB
G02BEB
GO2BIB

GO2HKB

G02BLB

G 0 2 ~

~ 2 N
Q02Bm
~ i B P B
~ 2 B B

~ 2 B 8

GOiCAB

~ 2 C O S

~ 2 C B B

~ i C B B

~ 2 C ~

GO2CZB

G02CPB

GOSCABe

GOSDAB a

GOSDBB •

G05DCB •

G05DPB•

GOSDBB •

GOSDFB•

GOSDGB •

GOSDN~•

GOSB,TB •

GOSIKBe

GOSDLB •

GO$1MBe

G0$DIB*

GOSDZB •

G05EYBe

GOS~Be

GO$EC~*
GO5~B*

GOSSe

GOSE27B*

GOSEZB*

~ 5 ~ B e

~ S C F B • •
~ 5 ~ B e

AB 4 8 p . 37

B - G~IRRkTZONS P.lmKARC2i

L i n e a r p r o | t r a i n s p r o b l e m :

s l n p l e z e l z o r i t h n , one i t e r a t i o n

0 o n t r a c t e d s i m p l e x m e t h o d

N e t w o r k p r o b l e a , s h o r t e s t p a t h

M01 - SORTING

S o r t a v e c t o r , b y S / n j l o t o n ' s i m p l e m e n t a t i o n o f Q u i c k a o r t :

r e a l n u m b e r s , i n t o a s o e n d i n 8 o r d e r

i n t o d c s e e n d i n S o r d e r

i n t e j e r s , i n t o a s o e n d i a s o r d e r

i n t o d e s o o n d i n s o r d e r

c h a r a c t e r d a t a . i n t o a l p h a n u m e r i c o r r e v e r s e a l p h a n u m e r i c o r d e r

o r some o t h e r u s e r - s p e c i f i e d o r d e r

S o r t a v e c t o r an d p r o v i d e an i n d e x t o t h e o t i s l n 8 1 o r d e r :

r e a l n u m b e r s , i n t o a s c e n d / m s o r d e r

i n t o d e s c e n d l n 8 o r d e r

i n t e s e r a , i n t o e s c o n d t n | o r d e r

i n t o d e s c e n d i n s o r d e r

P r o v i d e an i n d e x t o ' t h e s o r t e d o r d e r o f a v e c t o r , l a e r t e s t h e v e c t o r u n c h a n s e d :

r e a l n u m b e r s , i n t o a s o e n d i n s o r d e s c e n d i n 8 o r d e r

i n t e s e r s , i n t o a s c e n d i n S o r d e s c e n d i n $ o r d e r

S o r t t h e r a y s o f a m a t r i x on k e y s i n an i n d e x c o l m m :

r e a l n u m b e r s , i n t o a s c e n d i n | o r d e r

i n t o d e s c e n d i n $ o r d e r

l n t e | e r s , i n t o a s c e n d i n 8 o r d e r

i n t o d c s c e n d i n 8 o r d e r

S o r t t h e ro w s o f s m a t r i x o n k e y s i n an i n d e x c o l u m n (s) :

c h a r a c t e r d a t a . l a t e a l p h a n u m e r i c o r r e v e r s e e l p h a n u m e r l o o r d e r

o r some o t h e r n s e r - s p e c i f L e d o r d e r

P01 - m~RORTRAPPING

S u p p r e s s o r d i v e r t e r r o r m e s s a J e s

Node o f f e l l e r s r o u t i n e s

T e r a i n a t e p r o a r u n w i t h e r r o r m o s s a s e and number

I n t e r r u p t p r o | r a n w i t h e r r o r m e s s e n e and n u m b e r

S - APPROXINATIONS OF SPECIAL FUNCTIONS

A t t a i n (x)

k r c u n s (r)

T a n h (z)

S i n h (x)

C a s h (r)

& t c t s ~ (z)

k r c s i m h (z)

A r c o o a h (x)

E x p o n e n t i a l i n t e s r a l . E l (Z)

S i n e i n t e s r a l ° S i (x)

C o s i n e i n t e j r a l . C i (x)

Gunma r u c t i o n

C u u l a t i v e n o r m a l d i s t r i b u t i o n f u n c t i o n , P (z)

Complemen t o f c u m u l a t i v e h e m a l d i s t r i b u t i o n f u n c t i o n , Q(x)

E r r o r f u n c t i o n , e k f (x)

C u m p l u n e n t o f e r r o r f u n c t i o n , e r f c (x)

Bcsse l f u n c t i o n s :

3 0 (z)

J l (Z)

Y o (a)

Y I (Z)

H01ABB
B 0 1 A ~

HO4CAB

MOlkI~B

M01A]PB

MOIAQJ

M01ASB

M01BAB a

M01JL,TB

MOIAmB

M01ALB

NOIAMB

M01AABe

M01ACZ*

M01,kJm

MOIAFB

M01AGB

MOIA]B

M01K~e

N A G ~ ' e

NAGFAIL

NAGNAID

NJmSOFr

S09MtB •
SO9ABSe

S10AAB

S10Alm

SIOACB

S11AABe

811AEBe

- S11ACEe

S13,kAD

S13.ABB

S13,kCB

814AAB

SiSABB

SISAQ
SISARB
SiSADB

SIT&lEe

SI7AFBa

S17ACZ

S17A.DB

M o d i f i e d B e s s e l f u n c t i o n s :

I 0 (x)

ll(X)
g O (x)

g l (X)

TO1 - VECTOR AND MATRIX OPHRATIONS, TORRIX

T o r g i x B a s i s , r e a l s y s t e m s :

f u n d a m e n t a l d e c l a r a t i o n s and o p e r a t o r s

a r r a y g e n e r a t i n g r o u t i n e s

a r r a y g e n e r a t i n g o p e r a t i o n s

b o u n d i n t e r r o g a t i o n s

v a l u e i n t e r r o g a t i o n s

new v a l u e s

i n t e r c h a n g e s

new d e s c r i p t o r s

t r i m m i n g o p e r a t i o n s

e l a t i o n an d t o t a l e x t r e m e

c o n c r e t e e x t r e m e

l e v e l I a s s i g n i n g a d d i t i o n s

l e v e l 1 a s s i g n i n g m u l t i p l i c a t i o n s

a r r a y g e n e r a t i n g a d d i t i o n s

l e v e l 2 a s s i g n i n g a d d i t i o n s

a r r a y g e n e r a t i n g m u l t i p l i c a t i o n s w i t h s c a l a r

Sun p r o d u c t s

a r r a y g e n e r a t i n g m u l t i p l i c a t i o n s

T o r r l x E x t e n d e d , c o m p l e x s y s t e m s :

f u n d a m e n t a l d e c l a r a t i o n s and o p e r a t o r s

a r r a y g e n e r a t i n g r o u t i n e s

T o r r l x E x t e n d e d . s p a r s e s y s t e m s :

f u n d a m e n t a l d e c l a r a t i o n s

a r r a y g e n e r a t i n g r o u t i n e s

X02 - NAC~INE CONSTANTS

I m p l e m e n t a t i o n - d e p e n d e n t c o n s t a n t s and m a t h e m a t i c a l c o n s t a n t s

I m p l e m e n t a t i o n - d e p e n d e n t c o n s t a n t s f o r T o r r i x - B a s i s

X03 - INNERPRODUCTS

S i n g l e and e x t e n d e d p r e c i s i o n i n n e r - p r o d u c t s :

c o m p l e x v e c t o r s

rea l v e c t o r s

r o w s an d c o l e m n s o f r e a l s y m u e t r i c , m a t r t o e s

E x t e n d e d p r e c i s i o n o p e r a t i o n s :

c o m p l e x a r i t h m e t i c

r e a l a ~ i t h m e t i c

AB 4 8 p . 3 8

S 1 8 A ~ *

S18AMB*

Si8ACB
S18ADB

TOiAAB*

T01ABB a

T01AC~e l

T O I A I l e

TOiAEB •

T01AFBe

TOIAGB*

TOIAHB*

TOIAEB •

TOIALBe

TOIAJfl3 •

T01APB •

TOIAQB*

TOiARB*

T01ASB*

TOIATB*

TO1A~Be

TOIBABe
T01BBB*

T01CAB •

T01CBB*

XO2AABe
XO2ABBe

XOSDBB*

X03DAB e

XOSDCB e

XO3DBB e

X03DAB e

ReFePences

The NAG Algol 68 Library Ranual - Nark 3 (1981), NAG Central OfFice, 256 Banbuvy Road, Oxford.

