
ISSN 0084-6198 

Algol Bulletin no.45 
JANUARY 1980 

CONTENTS PAGE 

AB45.0 Editor's Notes 2 

AB45.1 Announcements 
AB45.1.1 Book Review - TORRIX 2 
AB45.1.2 Book Review - Introductory ALGOL 68 Programming 3 
AB45.1.3 Book Review - Einfuhring in ALGOL 68 4 

AB45.3 
AB45.3.1 

AB45.4 
AB45.q.I 
AB45.4.2 
AB45.4.3 

AB45.4.4 
AB45.4.5 
AB45.4.6 
ABe5.4.? 

Working Papers 
J. K. Reid, Functions for Manipulating 

Floating-point Numbers 

Contributed Papers 
ALGOL 68 Implementations - FLACC 16 
ALGOL 68 Implementations - ALGOl, 68C - Release I 17 
G. Baszenski and H. Wupper, A Proposal for 

Conversational Transput 23 
D. Grune and C. H. Lindsey, Overprinting in ALGOL 68 30 
Lu Ru-qian, The Translation of ALGOL 68 into Chinese 33 
D. C. Inee, ALGOL 68 and Algebraic Manipulation 38 
D. C. Inee, An Algorithm for the Execution of 

Limited Entry Decision Tables in ALGOL 68 45 



AB 45p.1 

The ALGOL BULLETIN is produced under the auspices of the Working Group on 
ALGOL of the International Federation for Information Processing (IFIP 
WG2.1, Chairman Robert B. K. Dewar, Courant  Institute). 

The folloBing-statement a p p e a r s  here at the request of the Council of 
IFIP: 

"The opinions and statements expressed by the contributors to this 
Bulletin do not necessarily reflect those of IFIP and IFIP 
undertakes no responsibility for any action that might arise from 
such statements. Except in the case of IFIP documents, which are 
clearly so designated, IFIP does not retain copyright authority on 
material published here. Permission to reproduce any contribution 
should be sought directly from the authors concerned. No 
reproduction may be made in part or in full of documents or working 
papers of the Working Group itself without permission in writing 
from IFIP". 

Facilitles for the reproduction of the Bulletin have been provided by 
courtesy of the John Rylands Library, University of Manchester. 

The ALGOL BULLETIN is published approximately three times per year, at a 
subscription of $10 per three issues, payable in advance. Orders and 
remittances (made payable to IFIP) should be sent to the Editor. Payment may 
be made in any currency (a list of acceptable approximations in the major 
currencies will be sent on request), but it is the responsibility of each 
sender to ensure that cheques etc. are endorsed, where necessary, to conform 
to the currency requirements of his own country. Subscribers in countries 
from which the export of currency is absolutely forbidden are asked to 
contact the Editor, since it is not the policy of IFIP that any person 
should be debarred from receiving the ALGOL BULLETIN for such a reason. 

The Editor of the ALGOL BULLETIN is: 
Dr. C. H. Lindsey, 
Department of Computer Science, 
University of Manchester, 
Manchester, M13 9PL, 
UnitedKingdom. 

Bac~ numbers, when available, will be sent at $4 each. However, it is 
regretted that only AB32, AB34, AB35, AB38, AB39, AB41, AB42 and AB43 are 
currently available. The Editor would be willing to arrange for a Xerox copy 
of any individual paper to be made for anyone who undertook to pay for the 
cost of Xeroxing. 

AB qsp.2 

AB45.0 EDITOR'S NOTES 

As you may deduce from the size of this issue (in all 3 dimensions), 
inflation has finally caught up with us, and those of you who receive a 
subscription reminder on this occasion will see that we have had to put the 
price up to $10 per 3 consecutive issues. Hopefully, this will enable us to 
rebuild our financial reserve. 

My difficulty is that the price I fix now has to last for the next 18 
months, and I have to make my guess as to what printing and postage costs 
may be by then. Be assured that IFIP makes no profit out of this operation, 
and if I should find that excessive funds are being accumulated they will 
all be passed back to you in the form of thicker issues, or extra issues, or 
delay of the next price increase. 

ABqS.I ABBQ.~U.Q.e,m.~..0..~_~ 

ABq5.;.1 

Ref.: 

Book Review: TOR~T¥ 

S.G.van der Meulen, M.Veldhorst, 

TORRIX - A Dro~r~mln~ svstem for oDerations on vectors 
and matrices over arbitrary fields and of variable sl~ L 

MC Tracts No.86 Volume I, Mathematisch Centrum, Amsterdam. 

TOERIX is a collection of ALGOL 68 declarations, suitable fort use as a 
library prelude. Its use is in manipulation of linear spaces (vectors and 
matrices), over any field. "Any field" means just that: TOERIX can be 
defined for arrays of integers, integers modulo some base, infinite 
precision numbers represented as strings, or any ALGOL 68 mode with 
operators that obey the algebraic rules defining a field. 

TORRIX is a substantial break with past practices in several ways. 

It implements a "parametrized type": the package itself does not change 
when the underlying field, the type of the objects which are elements 
of the vectors and matrices, changes. 

An attempt has been made to follow the syntax of algebra, even to the 
extent of using infix operators to describe the addition and 
multiplication of arrays; but at the same time an attempt has been made 
to retain the efficiency allowed by other notations which map more 
clearly onto yon Neumann architectures. 

Bound restrictions on vectors and arrays are removed, chiefly by 
(implicitly) extending them with zeroes in all directions. At the same 
time, programs which do not use this generality are not (substantially) 
adversely affected in performance. 

Because of this, the TOERIX book and the system it describes are more than a 
manual and a system: they are an experiment in programming language design. 
Here are some of the important questions which are addressed: 

- How suitable is ALGOL 58 for supporting a "parametrlzed type" What 
features are lacking and what features are needed? 



AB qSp.3 

- How suitable is the psrametrized type notion to packaEe desiEn? Is it 
realistic to expect the same array manipulation primitives to be useful 
for arraysof different types? 

- To what extent can the syntax or structure of algebra be imposed on 
architectures and languages that follow the yon Neumann model of 
computation? What compromises are necessary or desirable, and why? 

- To what extent can the semantics of algebra be imposed on finite 
computers? What compromises must be made in the use of algebraic 
notation to describe manipulations of the field of reals, when they are 
represented by the non-field of finite precision floating point 

numbers? 

There is not space here for a detailed critique of the ways that the TORRIX 
system addresses these questions. Suffice it to say that the system is a 
major contribution to our understanding of the issue. 

Incidentally, the tutorial methods used in the book are of some interest. In 
particular, the diagrammatic method used to explain the notion o£ reference 
in ALGOL68 and its interaction with the notion of arrays looks useful; this 
is an area that is fraught with difficulties for beEinninE ALGOL68 users, 
though it is apparently easy enouEb to use once learned. 

Bruce [.everett 

AB~5.1.2 

R e f . :  

~ok Review: Introductory ALGOL 68 Pro~rammin~ 

D.F.Brailsford and A.N.Walker. 
Ellis Horwood Ltd. (alias Wiley), paperback edition £5.95. 

Yet another textbook on ALGOL 68! What is this one particularly suited for? 
Certainly not as a teach-yourself beginner's book, although as an 
accompaniment to a biEinners' lecture course it miEht fare better. 

ALGOL 68 textbooks may be classified accordinE to how they treat the 
problem. This one starts out with identity-declarations (real x : 2q.5), 
followed by heap (sic) Eenerators (~.~ real Jim = heac real), possibly 
initialized (~ char letter : heap char := "a"). Then it talks of scope 
(hence ~ real x = ~.~ real := 17.2), and finally it gives the 
"abbreviated" form (real x := 17.2) and talks about variables as "~..~" 
values thereafter. All this is pedentially true, and any teacher who chooses 
to teach in this way will need this book. As an adjunct to a course taught 
in any different way however, it would be a disaster. 

(Let me declare my own position here. I consider that if you teach 
variable-declarations in the form .~I real x :: 17.2, most of the confusions 
disappear. You can explain (and it is almost true) that "19.~" and "F.9.~" mean 
the same thinE, except that ~ actually causes space to the generated, 
whereas ~ always refers to a space already generated somewhere else. 
Unfortunately, the possibility of actually writing ".~" in a 
variable-declaration is only mentioned in passing in this book.) 

The first two chapters build up modes, declarations and units in a complete 
and systematic manner (but complete proErams do not appear as such until 
Chapter 3, which is why only a masochist could use the book in a 
self-teachinE mode). After that, the presentation gets much better. 
EverythinE is tauEnt with the aid of copious examples, and all details are 
explored with great thoroughness - as a reference book it should be quite 

AB 45p.4 

good. However, the so-called "Advanced features" of the lanEuaEe - Jumps, 
lon~, short, bits, unions, casts, operation-declarations, flex, nil, 
is/isnt, and all programs of a "list processinE" nature - receive only brief 
treatment in the final chapter. 

The book was oriEinally conceived in terms of ALGOL 68R and it still makes 
great play of the differences between ALGOL 68R and full ALGOL 68. Mostly, 
the differences are discussed in footnotes but, every now and then, they 
break out into the full text. For example, if you follow the first reference 
for "string" Eiven in the index, you will find yourself in the middle of a 
lone paraEraph describing how "fish" is actually a bytes-declaration in 
ALGOL 68R, and the stranEe oonsequencies arising therefrom. 

There are substantial appendices concerned with representations, 
standard-prelude, proEramminE errors, syntax charts and implementations. 

C. H. Lind s e y .  

A B 4 5 . 1 . 3  

Book review: EinfUhrung in ALGOL 68 

Ref. : Harry Feldmann: EinfUhrung in ALGOL 68, Vieweg 1978, 

DM 29.80 

Dieses Lehrbuch wendet sich an Leser mit Programmierkenntnissen, insbesondere 

an ALGOL68-Kenner. B~reitschaft, mit Sprachbeschreibungsmechanismen umzugehen, 

wird vorausgesetzt. 

Die Beschreibung der Sprache erfolgt haupts~chlich mit Hilfe von zweistufigen 

Syntaxdiagrammen, die am Anfang des Buches kurz erl~utert werden. Die Dar- 

stellung is t  sehr kompakt und fur einen ALGOL68-Novizen sicher hartes Brot; 

hinzu kommt, dab die Diagramme mit einem Schnelldrucker hergestellt und da- 

durch nicht gerade Ubersichtlich geworden sind. 

In jedem Abschnitt gibt es i l lust rat ive Beispiele und in jedem Kapitel eine 

Reihe von Testfragen mit Verweisen auf die zugehUrige Textstelle und verdeck-' 

baren Antworten, die die wichtigsten Aussagen des Kapitels abdecken. Das Buch 

hat Ubrigens einen ausgezeichneten Index. 



AB 45p.5 

Die Sprache wird - zumindest syntaktisch - weitgehend vollst~ndig beschrieben. 

Leider folgt die Darstellung nicht immer dem orthogonalen Entwurf der Sprache. 

Beim Kopieren wird z.B. eine Unterscheidung zwischen Referenzen und anderen 

Werten gemacht, die sich gerade fur ALGOL68 erUbrigt. Argerlich ist, dab das 

Buch auch einige Fehler enth~It, die sich sogar noch in den Testfragen wieder- 

finden. So sind z.B. SprUnge in tiefer geschachtelte Ranges auch in Sonder- 

f~llen nicht erlaubt. 

Die hEchste Dichte erreicht das Buch bei der Beschreibung des standard prelude. 

Hier muB sich der Leser durch eine lange Liste yon Definitionen und seiten- 

weise AuszUge aus dem Revised Report arbeiten. Den Sinn z.B. des straightening 

herauszufinden, bleibt ihm selbst Uberlassen. 

Erg~nzend enth~lt das Buch eine grofle Sammlung von Obungsaufgaben verschie- 

dener Schwierigkeitsgrade, die sich nicht nur fur einen Kurs Uber ALGOL68 

eignen. Allerdings sind einige Aufgaben nur mit Stichworten angedeutet. 

Im Anhang ist nach einer knappen EinfUhrung in Zweistufengrammatiken die ge- 

samte Grammatik des Revised Report in Englisch und Deutsch abgedruckt. Alle 

Begriffe sind wie auch im Hauptteil des Buches konsequent, manchmal etwas 

eigenwillig, eingedeutscht. Durch die GegenOberstellung der beiden Fassungen 

ist die Korrespondenz jedoch leicht zu erkennen. 

Es ist erstaunlich, wieviel Dr. Feldmann auf gut 3o0 Seiten untergebracht hat. 

Als EinfUhrung ist das Buch jedoch zu knapp und gibt zuwenig Hilfestellungen. 

Didaktisch besser gelungene EinfUhrungen befinden sich in Van der Meulen/ 

KUhling: "Porgrammieren in ALGOL68", die dafUr allerdings zwei B~nde brauchen, 

und in Pagan: "Praktische EinfUhrung in ALGOL68". Dieses Buch dagegen kUnnte 

sich eher als Nachschlagewerk eignen. 

Christoph O e t e r s  

AB 4 5 p . 6  

A B 4 5 . 3 . 1  FUNCTIONS FOR MANIPULATING FLOATING-POINT NUMBERS 

J.K. Reid 

Abstract 

Floating-point arithmetic is used for most scientif ic and 

engineering calculations and needs frequently arise for determining 

the precision of a given floating-point number, for detailed access 

to its component parts and for reconstructing i t  from i ts parts, 

much as for complex numbers. We give detailed definitions of three 

suitable functions in the hope that their wide use wi l l  enhance 

portability. They are f i r s t  given without reference to any 

particular language and then made specific to Fortran. 

This note has been discussed by IFIP WG 2.5 on Numerical 

Software and has been approved by the working group, but does not 

constitute an of f ic ia l  IFIP document. 

Computer Science and Systems Division, 
Building '8.9, A.E.R.E. Harwell, 
Didcot, Oxfordshire. 

June 13,1979 



AB 4 5 p . 7  

1. Introduction 

Virtual ly a l l  scientif ic and engineering calculations nowadays 

are performed using floatlng-point arithmetic, that is with real 

numbers represented in the form 

f x  b m (I) 

where b (the base or radix) is a small positive integer (usually 

2, I0 or 16), m (the exponent) is a positive or negative integer and 

f (the fractional part or mantissa) i s  a number of the form 

P 
f = + ~ f i  b ' i  - , ( 2 )  

i= l  

each f i  being an integer in the range O~fi<b ( i .e.  a base b d ig i t ) .  

Such numbers are called "reals" in most languages, though in fact they 

consist of a restricted set of rationals. 

IFIP Working Group 2.5 on Numerical Software proposed to the X3J3 

committee iChat three intr insic functions be added to FORTRAN 77 to 

permit the determination of the precision of a given number, the breaking 

up of a number into i ts parts and the use of parts to synthesise a 

number. This proposal was not accepted by X3J3, but the working 

group remains convinced that they are needed so that portable software 

may contain, for example, a precise criterion for stopping an i terat ive 

process, roundoff-free scaling, roundoff-free argument reduction for 

function evaluation, extended range arithmetic and very fast 

approximate calculation of logarithms. Explicit examples are given in 

sections 2 and 3. 

AB 4 5 p . 8  

The purpose of this document is to emphasize the need for these 

functions and provide their definitions in a form suitable for any 

language in the hope that they wi l l  become widely available and hence aid 

portabi l i ty. In our submission to X3J3 we pointed out that certain 

machine parameters such as the base and the relative precision could 

be obtained by calls to these functions with specially chosen values of 

the arguments. This weuld have made these parameters available in a 

portable manner with v i r tual ly  no impact on the language i tse l f .  

However we feel that i t  is far more desirable for parameters 

(prei~rably those proposed by WG 2.5 [ I ] )  to be directly available 

without "clever" function calls. Furthermore these side effects have 

diverted attention from the value of the functions in their own right. 

In fact we have made a minor change to one of the functions, set 

exponent (or SETXP) so that the largest and smallest possible exponents 

are not provided when the result wo~Id otherwise be out of range, 

because this speeds its execution in the ordinary case. 

2. Precision function, c 

For the precision of a given processor number x we propose the 

function 

c(x) = max{x-x', x"-x,o) (3) 

where x' and x" are the predecessor and successor of x in the set of 

processor numbers that can be stored in the main memory and o is the 

underflow threshold.* 

*The underflow threshold is the smallest positive real number ~ such 
that no floating-point operation can cause underflow i f  i ts result is i t se l f  
outside (-o,a). I f  the predecessor or successor does not exist then x 
is used. 



AB 45p.9 

This function can be used directly to test convergence. As a 

very simple example consider the power series expansion 

sinh(x) = ~ x2i+l 
i= 30 (2i+I)! 

which converges very rapidly for IxI~l. A suitable program segment 

might take the form 

sinhx:=0; 12::0; term::x; 

while Jterml > c(sinhx) do 

begin sinhx=sinhx+term; 

i2:=i2÷2; 

term::term x x2/(12×(i2+I)) 

end 

This use of c ensures that just as much accuracy as possible is obtained 

for sinhx, with proper accountbeing taken of the fact that the precision 

is a piecewise constant function. 

3. Functions for manipulating floating-point numbers 

We propose the following functions for extracting the floating-point 

exponent of a given processor number x and for setting the exponent to 

a required value. 

(a) integer exponent (x) returns the integer n that satisfies 

the inequalities 

b n' l  ~ I x l  < b n 

where b is the radix* of the processor representation of 

x. I t  is undefined i f  x is zero or n is outside the 

range of integer processor numbers. 

*The radix b is the smallest integer greater than unity such that i f  r is a 
processor number that can be stored in the main memory and Ir l  > I then r/b 
is such a processor number and i f  r is such a processor number and Ir l  < l 
then r*b is such a processor number. 

AB 45p.10 

(b) set exponent (x,m) returns the value 

fxb m 

where f (the mantissa of x) is defined by the 

relations 

x = f x b  n,  b " l  s I f l  < 1 

and b is the radix of the processor representation of x, 

unless 

a) x is zero, in which case the result is always 

ze ro ;  

or b) x is non-zero and m is so small or large that 

the result would l i e  under the underflow 

threshold or over the overflow threshold, in 

which case the result is undefined. 

Note that the mantissa of x is available as set exponent (x,O), 

so there is no need for a special function for this purpose. Brown 

and Feldman [2] have proposed an expl ic i t  mantissa function and an 

expl ic i t  scale function which returns 

scale(x,k) = x x b k. 

The effect of scale may be obtained as 

set exponent (x,integer exponent(x) + k) 

when i t  is certain that the result wi l l  not be undefined because of the 

underflow or overflow l imits. Where there is  uncertainty, the size of 

integer exponent (x)+k should in either case be checked, though scale 

is defined to return a small number in the underflow case. We prefer 

to exclude these extra functions for the sake of simplicity since the 

effect may be obtained at only ~light inconvenience. 



AB 4 5 p . l l  

As a simple example of the use of these functions, consider 

the calculation of the determinant of a matrix by multiplying 

together the diagonai elements of i ts triangular factorization. 

Without care i t  is l ikely that underflow or overflow wi l l  result but 

the following code determines the product in the form xxb i 

x:=l; i:=O; 

fo_._.r k:=l step l u n t i l  n do 

begin i:=i+integer exponent(akk)+integer exponent(x); 

x:=set exponent(x,O)xset exponent(akk,O ) 

end 

For modest values of n the body of the for loop may be simplified 

to 
.begin i:=i+integer exponent (akk); 

x:=xxset exponent (akk,O) 

end 

but for large values of n there is a danger that this wi l l  cause underflow 

in x. 

4. Implementabilit@ 

To implement the function ~(x) it is necessary to interpret formula 

(3) in the light of hardware details. Special handling may or may not 

be required for the case x:O. 

Each of the other functions typically requires only a few 

instructions to fetch or modify the exponent field of a floating-point 

number. Itmay also be necessary to shift the exponentinto position, 

or to add or subtract a bias constant. Special care may be needed for 

negative x on machines where negation affects the exponent field. Also, 

on a twos-complement computer with the implicit b-point at the left, 

the machine mantissa of a negative power of 2 is -I rather than -~, and 

therefore the machine exponent of such a number must be increased by I.  

Finally, set exponent (x,n) may require special care when x=O. 

FDO3 including versions for single and double precision. 

single-precislon code is given in the appendix. 

AB 45p.12 

Ine three functions have been implemented in IBM assembler 

language for the Harwel] subroutine library with names FD02, ID04 and 

The 

5. Fortran representation 

Where these functions are included in an existing Fortran libraryj 

there is no alternative to the use of the naming convention of that 

library, as was the case at Harwell {see section 4). Otherwise we 

hope that the names EPSLN,INTXP and SETXP which we used in our 

submission to X3J3 will be adopted. Ideally they should be the names 

of generic functions so that the actual function called will be the 

one appropriate for the type of the )rgument, and where this is possible 

we see no need for exp l i c i t  names. This does however demand an 

extension to Fortran 77. To keep within this standard (and within 

Fortran 66) we propose the same names for exp l i c i t  REAL versions and 

the names DEPSLN,INTDXP,DSETXP for exp l i c i t  DOUBLE PRECISION versions. 

References 

[1] Parameterization of the environment for  transportable numerical 

software. Ed. B. Ford (for WG 2.5), ACM Trans. on Math. Software, 

(1978), lO0-1O3; SIGNUM Newsletter, 13 (June 1978), 20-23; 

SIGPLAN Notices, 1.~ (July 1978), 27-30; IMA Bull.  1_4 (July 1978), 

179-182; Algol Bull.  4_2 (May 197B), 7-10; Comp. Phys. Comm. 1.~ (lg78), 1-3. 

[2] Environment parameters and basic functions for f loat ing-point 

computation. W.S. Brown and S.I.  Feldman. Bell Labs. Computing Science 

Technical Report A/72, Oct. 1978; in "Conference on the programming 

environment for development of numerical software", Ed. C.L. Lawson, 

J.P.L. report 78-92; SIGNUM newsletter, 1.~ (March 1979), 42-45. 



AB 45p.  13 

A P P E N D I X  IBM-Assembly Code ~ Harwcg SubrouUne L ~ r a r y  

FDO2AS CSECT 

* FDO2AS - A SUBROUTINE TO CALCULATE THE PRECISION 

* OF A GIVEN SINGLE PRECISION FLOATING POINT NUMBER. IT 
* IS THE FUNCTION EPSILON(X) PROPOSED BY IFIP WORKING GROUP 
* 2.5 AND IS DEFINED TO BE 

* EPSLN(X) = MAX(X-X'.X"-X,SIGMA) 

* WHERE X' AND X" ARETHE PREDECESSOR AND SUCCESSOR OF X IN 
* THE SET OF PROCESSOR NUMBERS THAT CAN BE STORED IN THE MAIN 
* MEMORY AND SIGMA IS THE UNDERFLOW THRESHOLD. 

* USE: THE SUBROUTINE IS A REAL FUNCTION SUBROUTINE. 

* EPSLN=FDO2AS(X) 

* X IS A REAL FLOATING POINT NUMBER WHICH IS ASSUMED TO 
* BE CORRECTLy NORMALIZED. 
* EPSLN (FUNCTION RESULT) SET BY THE SUBROUTINE TO THE 
* PRECISION OF X AS DEFINED ABOVE. THE FUNCTION RESULT IS 
* FLOATING POINT AND RETURNED IN REGISTER ZERO. * 

* REGISTER USAGE: NO REGISTERS ABE SAVED AND 0 AND 1 ARE ALTERED. 

R0 EQU 0 WORK REGISTER (ALTERED) 
R1 EQU 1 ARGUMENT LIST ON ENTRY AND WORK (ALTERED) 
RI4 EQU 14 RETURN ADDRESS 
R15 EQU 15 ENTRY POINT AND USED AS BASE 

* FLOATING POINT REGISTER 0 IS USED TO RETURN FUNCTION RESULT. 

NL 

EPSLN 
MASK 
RPLEVEL 
F1 

USING FDO2AS,Ri5 ESTABLISH BASE 

L RI,0(R1) 
L R0,0(RI) 
N RO,MASK 
S RO,RPLEVEL 
BNL NL 

SR R0,R0 

0 R0,Fi 

ST R0,EPSLN 
LE ' 0,EPSLN 

BR Ri4 

DC F'O' 
DC X'7F000000' 
DC X'05000000' 
DC X'00100000' 
END 

PICK UP X INTO ... 
• .. A GENERAL REGISTER 
EXTRACT EXPONENT FIELD AND ... 
• .. REDUCE TO PRECISION LEVEL 
WILL EXPONENT UNDERFLOW ? 

YES: SET TO UNDERFLOW LEVEL 

NO: PUT IN MANTISSA VALUE ONE 

TRANSFER RESULT TO ... 
... FLOATING POINT REGISTER 

RETURN TO CALLER 

TO HOLD RESULT 
TO EXTRACTEXPONENT FIELD 
TO REDUCE EXPONENT TO PRECISION 
TO SET MANTISSA OF RESULT 

IDO4AS 

RO 
R1 
R14 
Ri5 

C64 
MASK 

AB 45p. 14 

CSECT 

IDO4AS - A SUBROUTINE TO EXTRACT THE EXPONENT PART OF A 
GIVEN SINGLE OR DOUBLE PRECISION FLOATING POINT NUMBER. 
IT IS THE FUNCTION INTEGER EXPONENT(X) PROPOSED BY IFIP 
WORKING GROUP 2.5. 

USE: THE SUBROUTINE IS A INTEGER FUNCTION SUBROUTINE. 

INTXP=IDO4AS ( X ) 

X IS A FLOATING POINT NUMBER (SINGLE OR DOUBLE PRECISION) 
WHICH IS ASSUMED TO BE CORRECTLY NORMALIZED. 

INTXP (FUNCTION RESULT) SET BY THE SUBROUTINE TO THE VALUE OF 
THE EXPONENT OF X. THE FUNCTION RESULT IS INTEGER AND 
RETURNED IN GENERAL REGISTER ZERO. 

REJ~ISTER USAGE: NO REGISTERS ARE SAVED AND 0 AND i ARE ALTERED. 

EQU 0 WORK REGISTER (ALTERED) 
EQU 1 ARGUMENT LIST ON ENTRY AND WORK (ALTERED) 
EQU 14 RETURN ADDRESS 
EQU 15 ENTRY POINT AND USED AS BASE 

FLOATING-PoINT REGISTERS ARE NOT USED 

USING IDO4AS,Ri5 ESTABLISH BASE 

L Ri, 0 (R1) EXTRACT . . . 
IC RO,0(Ri) ... EXPONENT FIELD ... 
N RO,MASK ... OF X 
S RO ,C64 CONVERT TO SIGNED INTEGER 
BR El4 RETURN TO CALLER 

DC F'64' IBM EXPONENTS KEPT IN EXCESS 64 FORM 
DC X'OOOOOO7F' TO EXTRACT EXPONENT FIELD 
END 



AB 45p.  15 

FDO3AS 

Re 
R1 
R14 
R15 

CSECT 

FD03AS - A SUBROUTINE TO BUILDA SINGLE PRECISION FLOATING 
POINT NUMBER GIVEN A SIGNED INTEGER EXPONENT VALUE AND A 
SINGLE PRECISION FLOATING POINT NUMBER HAVING THE REQUIRED 
MANTISSA. IT IS THE FUNCTION SET EXPONENT(X,N) PROPOSED 
BY IFIP WORKING GROUP 2.5. 

USE: THE SUBROUTINE IS A REAL FUNCTION SUBROUTINE 

SETXP=FD03AS(X,N) 

X IS A REAL FLOATING POINT NUMBER CONTAINING THE 
MANTISSA. IT IS ASSL~ED TO BE CORRECTLY NOPJ/ALIZED AND 
IS NOTALTERED. 

g IS THE INTEGER EXPONENT VALUE AND IS NOT ALTERED. 
SETXP (FUNCTION RESULT) IS THE FLOATING POINT NUHBER HAVING THE 

EXPONENT M ANDMANTISSA OF X. 

REGISTER USAGE: REGISTERS 0 AND i ARE ALTERED AND NOT SAVED. 

FLOATING 

EQU i ANGUI/ERT LIST AND WORK (ALTERED) 
EQU 14 RETURN ADDRESS 
EQU 15 ENTRY ADDRESS AND BASE 

POINT REGISTER 0 IS USED TO RETURN RESULT. 

USING FD03AS,Ri5 

L R0,4(R1 ) 
L R1 ,O(R1) 
LE 0 , 0 ( R 1 )  
STE 0 ,  RESULT 

LR R1 ,RO 
L RO,0(RZ)  

"A RO ,C64 

I C R1,  RESULT 
N Ri ,MASK 
OR R0,Ri 
STC RO, RESULT 

SER 0, ¢ 
AE " O,RESULT 
BR R14 

RESULT DC F' 0 ' 
C64 DC F ' 64 ' 
MASK DC X ' ¢ 0 0 0 0 ¢ 8 0 '  

END 

ESTABLISH BASE 

ARG ADDRESS H 
ARG ADDRESS X 
COPY OVER . . .  
. . .  ARGX 

PICK UP . . .  
• .. EXPONENT VALUE AND ... 
• .. CONVERT TO IBM EXCESS 64 FORM 

PICK UP OLD EXPONENT FIELD 
KEEP ONLY SIGN BIT 
COMBINE WITH NET/ EXPONENT 
PUT IN RESULT 

• SET RESULT, ALLOWING FOR 
• . .THE ZERO CASE, AND 
. . .  RETURN TO CALLER 

TO CONTAIN RESULT 
IBM EXPONENTS HELD IN EXCESS 64 FORM 
TO CLEAR EXPONENT FIELD 

AB q5p.16 

A B 4 5 . 4 . 1  

ALGOL 68 Imolementations - FLACC 

The following information regarding the FLACC implementation should be of 
interest to your readers: 

- FLACC was developed by the Chion Corporation in cooperation with 
Professor B.J.Mailloux of the University o£ Alberta. The system runs 
on, and produces code for computers which support the IBM/370 
problem-state instruction set. 

- FLACC implements the language defined by "The Revised Report on the 
Algorithmic Language ALGOL 68". 

Precise implementatlon of the standard language was the primary goal of 
the project. 

The Mathematisch Centrum (Amersterdam) has developed a comprehensive 
acceptance test for Algol 68 implementation. FLACC meets and exceeds 
the acceptance requirements of the MC Testset. 

All interactions with the host operating system are handled by a 
tightly-defined , separate module. Operating system interfaces currently 
exist for the OS/VS/MVS family, CP/CMS, and MTS. 

- The FLACC system is designed to perform well in virtual-memory 
environments. The entire system is re-entrant, and can therefore be 
installed in the LPA. The load-and-go version of FLACC occupies about 
350K (static csects) and normally requires an addltlonal 250K of 
workspace. FLACC does not require utility files for compilation. 

- A batching monitor is supplied with FLACC. The monitor supports a 
simple Job control language, and is intended for use by students. The 
batching monitor also eliminates the need for linkage editing and 
loading the object code. 

- FLACC can be used as a production compiler and produces standard OS 
object modules. The object code performance is comparable to that of 
the IBM PL/I Level F compiler. 

Version 1.2 of FLACC is leased for CSq00.00 per month, including the 
production library. The VM resident compiler system, which is primarily 
intended for student batch use, is leased for C$287.00 per month. The lease 
charges apply on an installation basis, and include support which is similar 
to IBM class B maintenance. 

FLACC may be obtained without charge for a trial period of thirty days. 

Further information and licensing details may be obtained by writing to: 

Chion Corporation 
Box 4942 
Edmonton, Alberta 
CANADA TgE 5G~ 



A B 4 5 . 4 . 2  

AB 45p.17 

ALGOb 68 Implementations - ALGOL 68C I Release I. 

The ALGOL68C language is based on the Algol 68 Revised Report and is 
a subset with extensions - a list of differences is given below. The 
compiler was developed at the University of Cambridge and achieves 
portability through the use of an intermediate language, ZCODE, which is 
tailored for the target computer. 

The ALGOL68C system is designed for general use in that it is not 
tailored specifically for student batch work nor is it a system 
employing global optimisation techniques. However, attention has been 
pald to run-time efficiency since the compiler is itself written in 
ALGOL68C and so compile times depend on the generation of efficient code 
by the compiler. 

Release I does not include a garbage collector, although the heap is 
available, and the restrictions of the previous "Prerelease" versions 
have been removed. The garbage collector, provision of a library 
mechanism, improved run-time diagnostics and the removal of some of the 
incompatibilities with Algol 68, as indicated below, are scheduled for 
Release 2 on which work has already started. 

IBM ~60/R70 version: 

OS/MVT, OS/VS2 (SVS) or OSIMVS is assumed but only minor changes are 
needed for OS/MFT and OS/VSI. A minimum of 180Kbytes are required by 
the compiler and 200K to 220Khytes is a more realistic figure for 
reasonably sized programs. The Universal Instruction Set is required on 
360 series computersand no 370-only instructions are generated. The 
system is distributed on 9-track magnetic tape written at 800 or 1600 
b.p.i, in object module form and source code for the ALGOL68C and 
assembler parts of the run-time system are also ihcluded. The assembler 
part of the run-time system has provision for using certain 370-only and 
extended precision instructions - these are activated by assembly 
switches hut the distributed object modules have been assembled so as 
not to use 370-only or extendedprecision instructions. 

For an order form, the terms and conditions of distribution, or for 
further information, please write to 

ALGOL68C Distribution Service, 
Computer Laboratory, 
Corn Exchange Street, 
CAMBRIDGE, CB2 3QG, 
U.K. 

45p .  z s  

DEC system-t0 and system-20 versioq- 

TOPS-IO (running on a KAIO with floating-point hardware, KIlO or 
KLIO processor) or TOPS-20 (on the DEC-20) operating system is assumed. 
A minimum of about 70K of memory is required for the compiler on a KAIO 
or other non-VM system. The compiler requires the KAIO instruction set, 
and by default generates code to suit the processor on which it runs. 
The run-time library requires the KAIO or KIlO instruction set, as 
appropriate. The DEC-20 version of the compiler and run-time does NOT 
use the compatibility package. The compiler runs under the control of a 
command scanner which accepts command strings in the TOPS 10/20 manner, 

The distribution tape is 9track, 800 b.p.l., and is written in 
DEC-IO (BACKUP) INTERCHANGE format (readable by DUMPER on the 20). It 
contains two save-sets for each system (KA, KI, KL and DEC20). These 
save-sets hold the compiler and run-time library in object form, 
together with other necessary system files. 

For an order form, the terms and conditions of distribution, or 
for further information, please write to 

Dr. R.G. Blake, 
Computing Service, 
University of Essex, 
Wivenhoe Park, 
COLCHESTER, C04 3SO, 
U.K. 

Telefunken TR440/TR445 version: 

Small programs are compiled in 40K KSB whereas, for large programs 
(around 30 pages of written code), up to 50K may be required. The code 
generated is comparable, in terms of speed and size, with that from the 
Fortran and Algol 60 compilers but the ALGOL68C compile-time is 
substantially longer. 

Two versions of the standard prelude are available and are selected 
by an option in the compile command - one version is that defined in the 
ALGOL68C Reference Manual and the other is the full Revised Algol 68 
standard prelude (with transput for all types of TR440 books) but with 
the exceptions of long and short modes, parallel clauses, semaphores and 
formatted transput. 

The ALGOL68C separate compilation mechanism maps conveniently onto 
the TR440 library concept. 

Work is in hand on the support of the NAG library under ALGOL68C and 
both Fortran subroutines and Algol 60 procedures may be called from 
ALGOL68C programs. 

For an order'form, the terms and conditions of distribution, or for 
further information, please write to 

Dipl.-Math. H. Wupper, 
Rechenzentrum der Ruhr-Universitat Bochum, 
Postfach 102148, 
D-4630 BOCHUH, 
Germany. 



AB 45p .19  
AB 4 5 p . 2 0  

Qther machines : 

Work is in progress on implementations for the PRIME 300, NORD 10 
and DEC PDP11 computers; no time estimates can be given at present for 
these implementations. 

The compiler is itself written in ALGOL68C and assumes a binary 
(either one's or two's complement) computer with an integer of at least 
16 bits width. Although these are requirements for the computer on 
which the compiler runs, the compiled code may be used on other 
machines. 

For an order form, the terms and Conditions of distribution, or for 
further information, please write to 

ALGOL68C Distribution Service, 
Computer Laboratory, 
Corn Exchange Street, 
CAMBRIDGE, CB2 3QG, 
O.K. 

ALGOL68C Reference Manual 

The language, but not its use, is described in formal terms by this 
manual but it is more readable than the Algol 68 Revised Report. It may 

be obtained from 

Computing Service Bookshop, 
Computer Laboratory, 
Corn Exchange Street, 
Cambridge, CB2 3QG, 
O.K. 

Differences between Al~ol 68 and ALGOL68C 

No parallel clauses (-). 

No flexlble names, no vacuums (-). 

No formatted transput, no get, no put, no binary transput, no random 
access transput, no displays in read and print but read and print 

may take multiple parameters (+-'). 

An indicant may not be used as both an operator and a 

mode-indication (-). 

Round brackets are not available in variable-declaratlons of 
tel-row-of objects if HEAP or LOC are omitted, but ROW()AMODE may be 

used (+-). 

Colon-symbol must not be present in virtual rowers (-). 

:= and =: are not available for operators; however, for any 
operator, op, the form op:= may be used as an ,assign-formula'. 

Widening of BITS and BYTES is not provided (-). 

GO TO is not available as an alternatlve for GOTO (-). 

Blanks may not occur in denotations (-|). 

Newlines are not permitted in tags (_e). 

The scope of an environ is local if it contains more than a 
single phrase even if it containsno declarations (-). 

The right operands for UPB and LWB operators are not values of a 
mode united from a sufficient set of modes each of which begins with 
'row'; instead, a sufficient set of UPB and LWB operators are 
provided each taking a right operand, the mode of which begins with 

'roW' • 

Labels are permitted in enquiry-clauses (+). 

UPTO and DOWNTO may be used to specify the count direction in a 
loop-clause for cases where the sign of the increment is not 
determinable at compile-time (+). 

ONTIL may be used in loop clauses instead of WHILE NOT (+). 

Dyadic operator priorities from I to 15 may be used (+). 

Monadic-formula is a secondary (+). 

Displacements (which are similar to assignations but yield the value 
previously referred to by the destination) may be used (+). 



AB 45p.21 AB 45p.22 

Assign-formulas (becomes-formulas, op:=, and displace-formulas, 
op:=:=, for an operator, op) are automatically available for all 
operators (+). 

Predicates are available as alternatives to boolean AND and OR to 
give a defined order of elaboration - thus a ANDF b is equivalent 
to IF a THEN b ELSE FALSE FI and a ORF b is equivalent to IF a 
THEN TRUE ELSE h FI (÷). 

Separate compilation for program segments is provided (+). 

Escaped-characters are available in string-denotations (+). 

Square brackets may be used instead of round brackets for calls (+). 

Thef-symbol is allowed in conditional-clauses, 
e.g. IF a THEF b THEN c ELSE d FI (+). 

:-=: may be used as a representation of the is-not-symbol (+). 

(e) It is intended that a Release 2 compiler should support get and put, 
binary and random-access transput, allow blanks within denotations 
and newlines within tags, as well as providing a garbage collector. 

(-) Algol 68 sublanguage feature. 

(+) Algol 68 superlanguage feature. 

ALGOL68C Release I Charges 

(June 1979) 

Academic: 

University, Polytechnic and selected other academic research 
institutions 

Initial charge £25, postage and packing extra 
Maintenance charges see below 

Except that the TR4~O/TR445 version is free to academic users. 

Other noncommercial institutions: 

Initial charge £100, postage and packing extra 
Maintenance charges see below 

Commercial in-house use: 

Initial charge 
maintenance charges 

£400, postage and packing extra 
see below 

Other: 

Commercial bureaux, distribution to third parties and all other uses not 
appropriate to the above categories - subject to negotiation. 

Maintenance charges: 

New versions of ALGOL68C Release I or other maintenance material will be 
made available from time to time and will be supplied to alltypes of 
installation at a nominal handling fee plus postage and packing costs. 

ALGOL68C Reference Manual: £I-95, postage and packing extra 

Notes 

I) Postage and packing is charged e x t r a  in all cases. 
2) V.A.T. (value added tax) is chargeable to commercial customers. 
3) Do not send money with the order as an invoice for the total charge, 

including postage and packing, will be sent on dispatch of the 
material. 

4) Payments should be made in sterling. 



AB 45p.2~ AB 45p.2q 

AB45.4.3 
A Pronosal for Conversational Transnu~, 

G. Baszenskl and H.Wupper 
(University of Bochum) 

It has often been asked how an interactive terminal should be interfaced 
to the ALGOL 68 Transput procedures. The simplest solution to this problem 
is the =line by line" method, in which the terminal is regarded as two 
separate sequential access books opened on two separate files, one for input 
and one for output. The Revised Report does not specify in what manner the 
text typed by the user becomes part of the book. Under no circumstances 
should the system pause and wait for the user to type a llne of characters, 
even an empty line, if the program has no intention of using the characters. 
Hence this updating of the input book should be delayed as long as possible, 
for instance until 'get good line' is called. Likewise, physical output of 
the text is not initiated until the program calls 'newline'. 

This interpretation is in complete accordance with the Report, with the 
understanding that the input book consists of the lines typed by the user, 
and the output book of the lines printed by the machine, the two appearing 
merged on the printed page. Additional features to smooth the interaction, 
such as editing to remove the user's mis-typings of the input line, and 
automatic prompting, may be provided by the implementor, or, hopefully, by 
the operating system, but they should be transparent to the user program. 

However, the purpose of this paper is to propose a more elaborate system, 
whose possibilities are illustrated by the following example of a 
conversation. (In this example, ~ indicates that the computer has ~nlocked 
the keyboard and possibly issued a prompt; ~ indicates that the user has 
finished typing and requires his message to be ~ent to the computer.) 

LEVEL 1 COMMANDS:~?~ 
POSSIBLE VALUES: 
MESSAGE 
MONITOR 
STOP 
COMPILE 
EXECUTE 

COER.:~COMPILE~ 
(SOURCBFILE=~BETA~ 
,LANGUAGE=~?~ 
ALGOL68 
ALGOL60 
FORTRAN 
COBOL 
BASIC 
PL/I 
PASCAL 
CORR.:~ALGOL 69~ 
"ALGOl. 69" NOT ALLOWED. CORR.:~ALGOL68~ 
,PROGRAM NAME=~PI~ 
BETA COHPILED; ~PROGRAM NAME=PI - COMPILE SUCCESSFUL 

LEVEL 1 COHHANDS :~[COMPILE (GAMMA, ALGOI.58, P2) ; 
MESSAGE(P2 COMPILED SUCCESSFUL[.Y,TERMINAL) ;EXECUTE(P1 ,DATA)~ 
*****GAMMA CONTAINS SYNTAX ERRORS. - COMPILE FAILED 

LEVEL 2 COHHANDS:~COMPILE(GAHHA,PL/I~ 
,PROGRAM NAME=~P2~ 

GAHHA COMPILED; PROGRAM NAME=P2 - COMPILE SUCCESSFUL 

LEVEL 2 CO~ANDS:~MONITOR(OFF)~ 
LEVEl, 2 COMMANDS:iLL 
P2 COMPILED SUCCESSFULLY 

STOP P1 2.649 SEt.  
LEVEL I COMMANDS:~EXECUTE(P1,FILE13);EXECUTE(P2,AFILE);MONITOR(ON); 
EXECUTE(P3,A3)~ 
+++++FILE FILEt3 IS ~PTY. 
ABORT PI .035 SEC. 
LEVEL 2 COMMANDS:~EXECUTE(PS,AFILES)~ 
*****P3 NOT FOUND. 
LEVEL 2 COMMANDS:~EXECUTE(PI,AFILE3)~ 
STOP P1 2.884 SEt.  
LEVEL 2 COMMANDS:~ 
STOP P2 9.821SEC. - MONITOR SUCCESSFUL 

*****P3 NOT FOUND. - EXECUTE FAILED 

LEVEl, 1CO~ANDS:~MESSAGE(PLEASE MOUNT TAPE 123456,OPERATOR); 
EXECUTE(Pl,123456)~ 
OPER WILL NOT RECEIVE MESSAGES - MESSAGE FAILED 

LEVEL 2 CO~ANDS:~STOP~ 

In thls method, it is clearly defined at each instant of time whether it 
is the user's or the machine's turn to use the terminal. We therefor assume 
a mechanism whereby the keyboard may be "locked" whenever the user is not 
permitted to type. Ideally, this will be a physical locking but, where this 
is not possible, it may simply be that anything typed is not reflected (but 
some systems or some terminals might store up such "typed ahead" characters 
until a subsequent unlocking). When the keyboard is officially unlocked 
(which may be indicated by a bell, a red light or by a system prompt 
transparent to the program), the user may type his message, after which he 
will press some SEND key. 

In an ideal system, changeover between input and output, and vice versa, 
may take place on any position in a line. There are, however, systems where 
SEND is related to the NEWLINE function in some way: sometimes SEND may 
imply NEWLINE (thus making it impossible for the machine to continue on the 
same llne as the user); sometimes, sadly though, NEWLINE implies SEND (so in 
one conversational cycle not more than one line can be typed in). As shown 
in the last paragraph, even if in an operating system NEWLINE implies SEND, 
multi-line input may easily be simulated by the implementor inside the ALGOL 
68 transput system. 

Unfortunately, when the program unlocks the keyboard, there is no way to 
prevent the user from typing less or (what may be worse) more information 
than the programmer had envisaged. If too much is typed (perhaps many lines 
of it), then any replies printed by the program will be printed far removed 
from the input lines they refer to. Moreover, the program may now have to 
ask the user to type corrections to the earlier lines before it can return 
to process the remainder of the user's original input. Since the corrections 
typed by the user may excite further remarks from the program, with requests 
for even further clarifications, the whole process is clearly recurslve. At 
one point of time there may exist several portions of input text, each 
separated by lines of program output, which the program may be actively 
engaged in reading. It therefore is important that the program may both have 
means to ask for new input before the previous portions of input are read 
up, and to detect the end of each separate portion of input. In the current 
proposal, these portions of input are regarded as separately opened hooks. 



AB 45p.25 

The Proposal. 

The program first opens the terminal for output in the usual manner, 
presumably via 'stand out channel'. An input file may be opened on the same 
terminal, using perhaps a special 'converse channel' or perhaps some special 
'idf'. During the elaberatlon of 'open' the keyboard then is unlocked and 
the program waits for the user to type his message (which may be Just a few 
characters without NEWLINE, or which may be several lines long). When the 
user presses SEND, the whole of the text typed since the unlocking is deemed 
to be a complete book with its logical file end at the point where the SEND 
was pressed. The current position of the output file must now be updated to 
reflect the position of the typehead or cursor (note that this must be done 
even if the input file will be closed before its characters are ever read by 
the program). Beyond adjusting the position numbers this should involve no 
action on the part of the implementor (unless he wants to have for his 
output book such properties as 'get possible' and 'set possible', in which 
case he will actually have to copy the text to the output book). (Note that 
'set', 'reset' etc. are in principle possible, perhaps even useful, on the 
input file.) After all this has happened, the elaboration of 'open' is 
completed and the program continues. 

Subsequently, if more input is required, another input book must be 
opened (on the same or another file). Thus, several input books may be open 
at any time, each with its own current position, all derived from separate 
texts typed earlier by the user. Typically, the later ones are parts of 
conversations with the program clarifying matters encountered in the earlier 
ones. If the program has finished with one particular input text it will 
close the corresponding file, thus indicating that the storage used to keep 
the text may be returned to the system. 

The following example program, that was used to produce the conversation 
above, shows some typical programming techniques: for each logical state a 
different 'on logical file end' routine has to be provided that performs 
the appropriate actions in case the user typed in too little. Sometimes, 
upon logical file end the file is closed and the program returns to a lower 
level of conversation (for example, if an error has been corrected, like at 
the end of procedure 'get item'), sometimes, after closing, a new book is 
opened on the same file (like in the procedure 'expect' when the input is 
found to be too short). 

# Command Language Interpreter # 
BEGIN 

MODE COMMAND : STRUCT(STRING command name, 
[I:0]PARAMETER par syntax, 
PROC([]VALUE)BOOL execute ), 

PARAMETER = STRUCT(STRING par name, 
TABLE par val~e ), 

VALUE = UNION (INT,STRING), 

TABLE = [1:0] STRING; 

[] STRING any : (), 
[] PARAMETER none = (); 

[] COMMAND command language = 
( 

("MESSAGE", (("TEXT", any), 
("DESTINATION", ("TERMINAL","OPERATOR","PRINTOUT"))), 

AB 45p.26 

NEST MESSAGE 

# A procedure to display messages. 
For the "NEST" notation see AB43.3.2 # ), 

("MONITOR", PARAMETER("STATE., ("ON","OFF.)), 
([]VALUE p)BOOL: 

(moni tor  := ( P i l l  I (INT i ) :  I = I ) ;  TRUE)), 
("STOP" , none, ([]VALUE p)BOOL: stop), 
("COMPILE", (("SOURCEFILE", any), 

("LANGUAGE", 
("ALGOL68","ALGOL60","FORTRAN.,.COBOL., 
"BASIC","PLII","PASCAL.)), 

("PROGRAM NAME", any)), 
NEST COMPILE 

# A procedure to invoke the appropriate 
compiler # ), 

("EXECUTE", (("PROGRAM NAME", any), 
("INPUT FILE", any)), 

NEST EXECUTE 
# A procedure to i n i t i a t e  execut ion  o f  

the named program # ) ,  
("" , none, ([]VALUE p)BOOL: TRUE) 

); 

PROC commands = (INT prio)VOID: 
# Ask for sequences of commands with level = prio; 

Read and execute one sequence after the other until a 
sequence is found with last command = "" # 

WHILE # sequence of commands, level = prio # 
put(out, (newllne, "LEVEL ", whole(prio,0), " COMMANDS:")); 
LOC FILE in; open for input(in); 
# FILE in now contains one sequence of commands 

which is executed in the following loop # 
LOt STRING cmd; # = command name; 

Used to terminate the current loop if emd = "" 
for the last command in the sequence # 

WHILE # single command # 
INT nmb = get item(in, command name OF command language); 
cmd := command name OF command language [nmb]; 
IF (execute OF command language [nmb]) 

(parameters(in, par syntax OF command language [nmb])) 
THEN 

( monitor AND omd/="" 
I put(out, (" - ", cmd, " SUCCESSFUL", newline)) 
); 

sklp(in, ";") 
ELSE (monitor I pot(out, (" - ", cmd, " FAILED", newllne))); 

IF skip(in, ";") 
THEN # Input not ended; 

Perhaps user wants to mend error # 
commands(prlo+1); TRUE 

ELSE FALSE 
FI 

FI 
DO SKIP OD; 
close(in); 
cmd/="" 

DO SKIP OD; 

PHOC get item = (REF FILE from where, [] STRING allowed)INT: 
IF LOC INT pos; 

STRING value = get string(from where); 
string in row of string(value, pos, allowed) 



AB 45p.27 

THEN pos  
ELSE 

IF va lue="?"  
THEN put  ( o u t ,  ( n e w l l n e ,  "POSSIBLE VALUES: " ,  newl ine)  ) ; 

FOR i TO UFB a l lowed DO p u t ( o u t ,  ( a l l o w e d [ i ] ,  n e w l t n e ) )  OD 
ELSE p u t ( o u t ,  ( " . . . ,  v a l u e ,  """  NOT ALLOWED. " ) )  
FI ;  
p u t ( o u t ,  "CORR. : ") ; 
LOC FILE c o r r ;  open fo r  i n p u t ( e o r r ) ;  
pos := get Item(corr, allowed); 
close (corr) ; 
pos 

FI; 

PROC skip -- (REF FILE where, CHAR expected)BOOL: 
BEGIN LOC FILE g := where; 

on logical file end(g, (REF FILE f)BOOL: GOTO false); 
LOC CHAR ch; get(g, ch); 
IF c h / f e x p e c t e d  
THEN put(out, (newllne, "WARNING: .-., expected, 

""" EXPECTED; ..., ch, """ FOUND.., newline)) 
FI; 

TRUE # End of input not yet reached # 
EXIT 
false: 

F~LSE # Input was ended # 
END; 

PROC parameters = (REF FILE par, 

[ ] STRUCT(STRING parname, [ ] STRING parvalue) syntax 
) [] VALUE: 

BEGIN LOC [UPB syntax] UNION(INT, STRING) actual par; 
IF UFB syntax = 0 
THEN SKIP # No parameters necessary # 
ELSE 

FOR p TO UPB syntax 
DO expect(par, (p=1 I "(" ~ ","), 

parname OF syntax[p] + .=.); 
actual par [p] := 

IF [ ]  STRING allowed = parvalue OF syntax [p ] ;  
UPB allowed = O 

THEN get string(par) # Anything allowed # 
ELSE get item(par, allowed) 
FI 

OD; 
skip(par, .),,) 

FI; 
actual par 

END ; 

PROC get string = (REF FILE from where)STRING: 
BEGIN LOC FILE stringfile :: from where; 

make term(stringfile, .(,);,,); 
on line end(stringfile, (REF FILE f)BOOL: (newline(f); TRUE)); 
LOC STRING value; 
get(stringfile, value) ; 
value 

END ; 

PROC expect = (REF FILE from where, CHAR what, STRING prompt)VOID: 
IF skip(from where, what) 
THEN SKIP 

ELSE close(from where) ; 
put(out, (what, prompt)) ; 
#re#open for input(from where) 

FI; 

PROC open for input = (EEF FILE f)VOID: 
open(f, .., converse channel) ; 

PROC string in row of string = (STRING value, REF INT pos, 

[] STRING allowed)BOOL: 
( LOC BOOL found := FALSE; 

FOR i FROM LWB allowed TO UPB allowed 
WHILE NOT found 
DO (found := (value=allowed[i] ~ pos := i) 
OD; 
found 

); 

LOC FILE out; open(out, terminal, stand out channel); 
LOC BOOL monitor := TRUE; 
DO commands(I) OD 

END 

AB 45p.28 

In the example above, for sake of brevity no attempt towards "batch 
compatibility- was made; it was assumed that the calls of 'open' for 
terminal input never fail and that 'get item' will succeed in any case. 
However, modification to a program that will run as well in batch mode, 
accepting the same language, but making no attempts to ask for corrections, 
is straightforward: if the first 'open for input' fails, 'stand in' is used 
instead, while failure of subsequent calls of 'open' will have to terminate 
the interpretation of the actual "command". 

On the other hand, some batch programs may easily be turned into 
c o n v e r s a t i o n a l  ones  by adding  s u i t a b l e  c a l l s  o f  

PROC prompt = (REF FILE f, STRING s)VOID: 
(close(f); put(out, s); open(f, converse Idf, converse channel)) 

and by 
on l o g i c a l  f i l e  e n d ( i n f l l e ,  

(REF FILE f)BOOL: ( p r o m p t ( f ,  "INCOMPLETE; GOON.); TRUE)) 

Implementation in Unfriendly Ooeratin~ Systems, 

While most operating systems seem to provide (physical or loglcal) 
locking and unlocking of the keyboard, many of them interpret the NEWLINE 
function as NEWLINE AND SEND, so by no means may more than one line be input 
at a time. There are other systems where each character typed in is SENT 
immediately, which means that input cannot be structured at all. Even in 
such systems a decent multi-line conversational transput may be simulated by 
the ALGOL 68 Implementor without difficulties; implementor and user only 
must agree to use some special character or sequence of characters to denote 
the new SEND function. 

When the program calls 

open(infile, converse idf, converse channel) 
first of all a scratch file is established on 'stand out channel'. The 
transput system then loops copying lines or characters from terminal input 
to that file, unlocking the keyboard and writing newlines whenever 
necessary, without giving ~control back to the pi~gram. Only when the code 
agreed to denote SEND is detected the system closes the scratch file and 
reopens the same book for 'infile', this time on 'stand in channel'. 
Therefore, the elaboration of 'open' is completed in the usual manner; it 



AB 45p.29 

should not be of any relevance to the program that 'infile, is now attached 
to quite another channel than asked for in the call of 'open'. 

The authors wish to express their thanks to C.H.Lindsoy for fruitful 
discussions of the problem and for helping to prepare this article, and to 
Hartmut Ehlich, who was so interested in the proposal that he spent a few of 
his spare evenings to provide an implementation. 

AB 45p.30 
AB45.4.4 

Overprinting in ALGOL 68 

D.Grune (Hathematisch Centrum, Amsterdam), 
C.H.Lindsey (University of Manchester). 

The Transput specified in the Revised Report does not provide any means 
for overprinting; in all books, a character position may be occupied by at 
most one character. 

The most likely applications of overprinting are: 
1. Emphasizing parts of texts by underlining, double intensity, etc. - in 

effect to provide extra founts of characters. 

2. Producing typographical marks (e.g. 2) not available in the machine's 
character code. (However, it is the responsibility of the implementor to 
print all characters which are in his code, even if on some devices he 
is forced to overlay several marks.) 

3. Simulating graphic output with little blocks of different grey values, 
e . g .  I I  ff I 0 : , . 

The S o l u t i o n s  t 

The f o l l o w i n g  t e c h n i q u e s  a re  a v a i l a b l e  to  f u l f i l  t h e s e  r e q u i r e m e n t s :  
A. P r o v i d e  s p e c i a l  CONVs fo r  the  e x t r a  f o u n t s ,  e t c .  (and p r o b a b l y  a l s o  a 

s p e c i a l  channe l  to  a d m i n i s t e r  i t  a l l ) .  
B. Some c h a r a c t e r  i s  chosen to  have the  e f f e c t  o f  " b a c k s p a c e .  when i n c l u d e d  

in strings that are output. A procedure 'make backsp, enables the user 
to specify which character, if any, is to have this property. 

C. A procedure 'sameline, is provided which enables the user to specify 
that the next line is to be printed on top of the previous llne (cf. the 
carriage control characters of FORTRAN). In conjunction with this, the 
user is given explicit control over a set of multiple buffers, either by 
means of a subroutine package provided for the purpose, or by letting 
him program it out himself. 

Discuss ion .  

Methods A and B in  gene ra l  r e q u i r e  the  implementor  to  ma in ta i n  two o r  
more line buffers behind the  scenes. 

We suggest that A should be the preferred solution to Problem I (and, 
moreover, it enables the same techniques to be used for other fount change 
applications, such as inverse video, and even photo-typesetters). It is also 
our preferred solution to Problem 3 (the grey levels are simply REPRs of the 
integers '0..max abs char'). The disadvantage of A is that it requires a new 
CONV for each new application, and implementors may be reluctant to provide 
such generous facilities. Also, it is unlikely that a book written in this 
way could  be read  back a g a i n .  

Method B is the preferred solution to Problem 2. It would be quite 
impossible to read back a book written in this way. 

Method C is the easiest to implement, especially on existing 
implementations. It requlres no extra buffers behind the scenes, but it 
places the greatest onus on the user. However, if implementors are unwilling 

to provide methods A and B, this may be the only solution to all three 
problems. Moreover, it is the method most likely to permit the book to be 



AB qSP.31 

r e - i n p u t .  

Effect on the Lan~uaRe. 

Method A i n v o l v e s  no e x t r a  l anguage  f e a t u r e ,  a l t h o u g h  i t  r e q u i r e s  some 
s i g n i f i c a n t  e f f o r t  from the  implemento r .  The o t h e r  two methods a r e  l a n g u a g e  
e n t e n s i o n s  which we now proceed to  d e f i n e  f o r m a l l y .  

Make backsn~ 

A special procedure 'make baeksp' is provided which associates a string 
with a file. Any character in that string will then act as a genuine 
backspace character upon output. 

For this purpose there is a new environment enquiry 'make backsp 
possible' and a field 'STRING ~ backsp' is added to FILE. 

We have then 
PROC make hacksp = (REF FILE f, STRING b) VOID: 

(make backsp possible (f) ~ baeksp OF f := b I undefined) ; 

Empty STRINGs have to be added in the file assignations in 'open' and 
'establish', and the line 'IF found THEN' in ,put char' (10.3.3.1.b) must be 
r e p l a c e d  by 

IF make backsp possible (f) 
AND char in string (char, LOC IHT, bscksp OF f) 

THEN IF (c -:= I) < I THEN undefined FI; 
C the character at position (p, i, c) of the book is marked C 

ELIF found 
THEN 

IF C the character at position (p, i, e) of the book is marked C 
THEN k := C an unmarked character representing a combination of 

'k' and the marked character {not necessarily different from 
'k' or the marked character, since it is not intended that an 
infinite number of composite characters be available} C 

FI; 

Should a composite character output in this manner subsequently be 
re-input, it would depend on the 'cony' field of the file then in use as to 
what character, if any, was obtained. {However, if the marked character is 
already the result of a previous combination, the resulting character may 
perhaps not differ from 'k' or the marked character.} 

A special procedure 'sameline' is provided which may be called in place 
of 'newllne, in between the lines to be overprinted. It is arranged that 
'line number' (I0.3.1.5.b) counts only lines visibly distinct on the printed 
page, so that the page end event occurs only when the printed page is full. 
This is brought about, in terms of the model of the Revised Report, by 
increasing the page size each time 'sameline' is called {of course, all that 
has to be done in an implementation model is to omit to increase the line 
count}. However, if the book should subsequently be 'reset', or 'close'd and 
re'open'ed for input, there is in general no way in which the two kinds of 
line can be distinguished and it should be expected that the gremlins 
(I0.q.2) will have renumbered the lines accordingly {so that 'line number' 
will no longer yield the value that it did at the time the line in question 

was originally 'put'}. Note that each overprinted line is of the same length 
as the (possibly compressed} original line. 

AB ~5P.32 

There is a new environment enquiry 'samellne possible' which returns TRUE 
only if the book linked to the file is capable of supporting the facility. 
It is not anticipated that this facility will be possible on random-access 
books. Clearly, 'put possible' must be TRUE. 'samellne, itself is then 
defined as follows 

PROC sameline = (REF FILE f) VOID: 
IF NOT sameline possible (f) OR set possible (f) THEN undefined 
ELSE set write mood (f); CO Commentary 31 (ABqq.3.1) is assumed CO 

newline (f); 

REF INT p = p OF cpos OF f, I = i OF opos OF f; 
FLEXTEXT text = (text OF f : (FLEXTEXT t2): t2); 
[LWB t e x t [ p ]  - 1 : UPB t e x t [ p ] ]  FLEX [1 : O] CHAR t ;  
t [  : 1-2]  := t e x t [ p ] [  : 1 - 1 ] ;  
t [ 1 - 1 ]  := t e x t [ p ] [ 1 - 1 ] ;  
t [ 1  : ] := t e x t [ p ] [ 1  : ] ;  
t e x t [ p ]  := t ;  1 OF lpos  OF book OF f := 1 - : =  1;. 

CO 'opos OF f' and 'ipos OF book OF f' both point to the 
start of the llne 'text[p][l]', which is of the same length 
as the (possibly compressed} line 'text[p][l - 1], CO 

C the line 'text[p][l], is marked to indicate that, when it is 
eventually copied by some system-teask to a printing device, 
it is to be printed over the top of the line 'text[p][l-1], C; 

FI ; 

For formatted transput, a new alignment 'm' should be provided, whose 
effect is to call 'sameline' the number of times given by its repllcator 
[however, there would be little point in having this number other that 0 or 
1}. In the procedure 'alignment, (I0.3.5.i), the followinE line should 
therefore be inserted in the appropriate place 

ELIF a = "m" THEN TO r DO samellne (f) OD 

Although the 'samellne' facility is not particularly easy to use as it 
stands, it is suggested that a convenient way to use it would be to declare 
an extra file 'assoclate'd with a LGC [I : level][1 : I][I : line length] 
CHAR. Procedures could be written which allow the user conveniently to 
assemble a (conceptual} llne of text, consisting of several actual lines. 
For convenience, these procedures should be of mode FROC (REF FILE} VOID so 
as to be useable within data lists. The various lines would subsequently be 
written to the proper flle using 'samellne'. This process might well be 
initiated as a result of a page end event on the 'assoclate'd file. 

Z~n~A~eamtt~ 

These proposals have benefitted greatly from discussions with members of 
the ALGOL 68 Support Subcommittee, and especially with Hanno Wupper. 



AB45.4.5 

AB 45p.33 

The Translation of Alaol 68 into Chinese. 

Lu Ru-qlan 

Institute of Mathematics, Academia Sinica 
Peking, China. 

I o b t a i n e d  a c o p y  o f  t h e  r e p o r t  o f  ALGOL 68 a t  t h e  end o f  1972 a n d  
d e c i d e d  t o  t r a n s l a t e  i t  i n t o  C h i n e s e .  I t  was  b e c a u s e  t h e  C h i n e s e  c o m p u t e r  
scientists should be aware of the latest progress in their field. By the end 
of 1973, the work was finished and the book was published at the beginning 
of this year. But, over a year ago, I was told that the revised report on 
ALGOL 68 had appeared. I soon found the issue of ACTA INFORMATICA that 
carried it and began to translate the new version. This work was completed 
in 1977. 

During the translation, I had to make some inflections in the Chinese 
version against the English one so as to keep both the structure of the 
report and its mnemonic character. In addition, the translated version must 
be faithful both to the report and to the Chinese language. This article 
will report the main changes which have been made. At the beginning of every 
paragraph some words from section 1.1.5 of the revised report are quoted. 

I. To what degree the translation must be done. 

"The originals contained in each production tree of T may be different 
protonotions obtained by some uniform translation of the corresponding 
production tree of D." 

Taking into consideration that every protonotion, which is a notion, has 
its meaning in English, it was decided to translate all the notions into 
Chinese. I did even more - all the symbols were also translated. But the 
metanotions were left untranslated because most of them were not English 
words. 

II. Introducing Chinese characters. 

"Different syntactic marks {1.1.3.1.a} may be used {with a 
correspondingly different metaproductions rule for 'ALPHA'}." 

In order to express the notions and symbols in Chinese (according to I.), 
it was necessary to introduce Chinese characters. On the other hand, the 
English letters were saved because they were still needed in describing the 
syntax. 

There are following changes: 

I. To the right side of the metaproduction rule ALPHA a hypernotlon 
'bold-faced Chinese characters' was a d d e d .  

2. 'bold-faced Chinese characters' was also included in "small syntactic 
marks" in 1.1.3.1.a).(i). 

3. At the end of 1.1.3.1.g, the foliowing subsection was added: 

"When the term 'bold-faced Chinese characters' appears in a 
metaproduction rule, it represents all the bold-faced Chinese 
characters, uniformly arranged according to some fixed order, and 
separated by semi-colons; when it appears in 1.1.3.1.a).(i), it means 

AB 4 5 p .  3~ 

t h e  same e x c e p t  t h a t  t h e  C h i n e s e  c h a r a c t e r s  a r e  s e p a r a t e d  by  commas;  
when i t  a p p e a r s  i n  a p r o d u c t i o n  r u l e ,  i t  m e a n s  t h e  same e x c e p t  t h a t  t h e  
C h i n e s e  c h a r a c t e r s  a r e  n o t  s e p a r a t e d  a t  a l l . "  

III. How to save the mnemonic character. 

"The method of derivation of the production rules and their 
interpretation may be changed to suit the peculiarities of the 
particular natural language." 

In order to follow the Chinese grammar, it is necessary to rearrange the 
relative positions of metanotions and other elements within the 
hypernotions. 

For o example, the following original text of 4.2.1.a of the revised 
report: 

a) NEST mode declaration of DECS{41a}: 
mode{94d} token, NEST mode joined definition of DECS{41b, c}. 

was translated as follows (according to the order in Chinese): 

a )  DECS o f  NEST mode d e c l a r a t i o n { 4 1 a } :  
mode{94d} t o k e n ,  DECS o f  NEST mode d e f i n i t i o n  J o i n e d { 4 1 . b . c } .  

IV .  Bow t o  a v o i d  a m b i g u i t i e s .  

"In a highly inflected natural language, it may be necessary to 
introduce some inflections into the hypernotions." 

The problem of ambiguity relates mainly to the translation of modes. 
Because of the difference between Chinese and English, some previously 
unambiguous mode names become ambiguous during the translation. 

I. The Chinese translation of 

union of reference to integral real mode 

and 

reference to uni~on-uf integral real mode 

would be the same, i.e. 

reference to integral real union mode. 

2. The following would be alike for the Chinese translation: 

reference to row of integer 

and 

row of reference to integer. 

Both would be 

reference to i~teger row. 

3. In Chinese, 



AB qSp.35 

reference to p r o c e d u r e  yielding integer 

and 

procedure yielding reference to integer 

would be the same, i.e. 

reference to integer procedure. 

In order to avoid these ambiguities, t.here must be some forms of 
parentheses. In the Chinese translation, 'from' and 'union mode' were used 
as parentheses (like the English parentheses 'union of' and 'mode') for 
UNION; 'one' and 'mode' as parentheses for 'ROWS of mode'; 'without 
parameter' and 'procedure' as parentheses for 'procedure yielding MOID'. 

Thus the six modes above would be translated as 

~) from reference to integer real union mede. 

b) reference to from integer real union mode. 

e) reference to one integer row. 

d) one reference to integer row. 

e) reference to without parameter integer procedure. 

f) without parameter reference to integer procedure. 

V. On the equivalence Of modes. 

"A more elaborate definition of 'equivalence' between protonotions". 

In order to test the equivalence of MODEs, the revised report splits 
every MODE into two parts, i.e. HEAD and TAILETY. But this is not sufficient 
for the Chinese translation. A MODE must be splitted into three parts, i.e. 
HEAD, TAILETY and APPENDIXETY. It was decided to make this inflection 
because there were three HEADs, i.e. 'PREF', 'FLEXETY ROWS of' and 
'procedure with', which must be splitted into two parts in the translation, 
one placed before TAILETY, the other after TAILETY. This fact aroused a lot 
of changes in the corresponding section. Below a list of these changes is 
given. 

I. The first statement of the second paragraph of Chapter 7 is now 

"Modes are composed from the primitive modes, such as 'boolean', with 
the aid of 'HEAD's, such as 'structured with', and 'APPENDIXETY's, such 
as 'procedure', and they may be recurslve." 

2. 7.1.1.A was changed to 

A) PREF :: without parameter; HEF to. 

3. In 7.3.1 following changes were made: 

B) HEAD :: PLAIN; PREF{71A}; structured with; 
FLEXK~rY one; with; from; void. 

C) TAILETY :: MOID; FIELDS mode; PARAMETERS yielding MOLD; 
M(X)DS union mode; EMPTY. 

AB qSp.36 

D) APPgNDIXgr¥ : :  ROWS mode; p r o c e d u r e s ;  EMPTY. 

b) . . . . . . . . . . . . . . . . . . . . .  . . . . . .  . 
WHETHER (HEADS) i s  (HEAD4) and (APPENDIXET¥3) i s  (APPENDIXETYq) 

where  SAFE3 HEAD3 TAILET¥3 APPENDIXETY3 d e v e l o p s  f rom SAFE1NOIDl{c} 
and SAFEq HEADq TAILETY~ APPENDIXETYq develops from SAFE2 MOID2{c}. 

c) WHETHER SAFE2 HEAD TAILETY AFPEHDIXETY develops from SAFEI MOID{b,o}: 
where (MOID) is (HEAD TAILETT APPE~DIXETY), 

WHETHER SAFE2 HEAD TAILETY APPENDIXET¥ develops 
from MU has NODE SAFEI NODE{c}; 

WHETHER SAFE2 HEAD TAILETY APPENDIXETY develops from SAFE1 NODE{c}. 

q. From llne 7 in the pragmatic of this section (p. I05), the text was 
changed as follows: 

....... and split into its 'HEAD', its 'TAILET¥', and its 'APPgNDIXETY', 
e.g. 'without parameter MOID procedure' is splitted into 'without 
parameter', 'MOID' and 'procedure'. 

If the 'HEAD's and 'APPENDIX~I's differ, then the matter is settled 
(rule b); otherwise the 'TAILgTY's are analysed according to their 
structure (which must be the same if the 'HEAD's and 'APPENDIXgTY,s are 
identical). In each case, except where the 'HEAD's were 'from', ....... 

Vl. On predicates. 

"Descendents of those production trees need not be the same if their 
originals are predicates." 

Since the held-faced Chinese characters were also introduced as small 
syntactic symbols, there must be corresponding changes for the predicates. 
In fact, the production rule 1.3.1.J was changed to: 

J) .......... ..... .. ..... ............... 
WHETHER (ALPHAI) coincides with (ALPHA2) in 
(abcdefghijklmnopqrstuvwxyz bold-faced Chinese eharacters){k,1,-} 
....... 

VII. On paranotions. 

"Different inflections for paranotions,. "Some pragmatic remarks {1.1.2} 
may be changed." 

In the Chinese translation we need not be worried about the infleetlons 
of paranotions when they appear at the beginning of a statement or in the 
plural from. There is no difference between ecapitale and emaall. Chinese 
characters. Nor is there need to add "s" at the end of a name. Besides, 
hyphens are also not needed. Thus, all sub-sections dealing with this theme 
were deleted from the revised report (p.28, from line 14 till line 28). 



AB 45p.37 AB 48p.38 

VIII. On the terminal symbols. 

"T defines the same reference language {9.4} and the same standard 

environment {10} as D." 

By translating the terminal symbols into Chinese the mnemonic character 
of these symbols were taken into account. It was somewhat difficult to 
translate the 'bold to symbol', which is used in the revised report both in 
the to-part of a loop clause and in go-to-option of a strong-MOID-NEST-Jump. 
There is no Chinese word having the meaning of both. Hence in the Chinese 
version there are two terminal symbols corresponding to 'bold to symbol', 
one of which is 'bold end value symbol' (used in loop-clauses), the other is 
'bold to symbol' (used in go-to-option). They have the same representation. 

IX. On metaproduc t ions .  

"Additional means for the creation of extra metaproductlon rules". 

A new metaproduction rule for APPENDIXETY is introduced, while some other 
metaproductions are modified. In fact, we know this already from the 

discussion above. 

A B 4 5 . 4 . 6  ALGOL 68 and Algebra ic  Manipula t ion .  

D. C. l n c e .  

The Open U n i v e r s i t y ,  Mil ton Keynes, U.K. 

The decade has seen research into algebraic manipulation by computer progress 

to the point where the majority of computer users have access to at least one algebraic 

manipulation system. The growth of these systems has not however been accompanied 

by a corresponding growth oF reports of their applications. A number of reasons 

have been put forward by users and potential users to explain this disparity, of 

which the two that occur the most are: 

l) The user interface for a number of present systems is poor, manipulations 

on algebraic expressions being expressed in a non-natural way, usually 

by means of a series of subroutine calls, or in a language which, although 

well suited to the construction of such systems (eg LISP), tends to he 

alien to the programming experience of the average scientist or engineer 

that make up the potential user community. ABC ALGOL and ib derivatives 

(I) and SAC (2) ore examples of systems to which this criticism con be 

applied, while even (3), the only previous attempt to write an algebraic 

manipulation system in Algol 68 could have this criticism levelled at it. 

2) The majority of users do not wish to perform algebraic manipulations 

in isolation, the manipulations being just one stage in what may be a 

large program in which numerical or even other symbolic processes 

may lake a dominating part. A number of systems, CAMAL (4) and 

REDUCE (6) for example, while having excellent facilities for algebraic 



AB 45p .39  AB 4 5 p . 4 0  

manipulation tend to fall short with respect to the numerical and data 

structurlng facilities required and even fall short with respect to the 

control facilities necessary for efficient programming. 

There does however exist in Algol 68 a number of features which not only make 

i t  emminently suitable for constructing algebraic manipulation systems but also 

lead to the construction of systems to which the above two objections do nat apply. 

These features are: 

1) Operator declarations 

The availabil ity of operator declaration in Algol 68 means that a 

user can express his manipulations in a manner near to his normal 

workirlg notation. It should be possible in an Algol 68 based system 

to write 

a := (1 + x)*(1 + y - x) 

assuming declarations of +, - ,  * on suitable data structures, rather 

thana series of subroutine calls, or worse still as a LISP expression. 

This facil i ty alone removes the first objection outlined previously. 

2) List ~acessln~l facil i ty 

A property of the problems that are capable of solufiQn by an 

algebraic manipulation system is that the user is unable to specify 

in advance the amount of storage required for the algebraic 

expressions that are created. It is for this reason that almast all 

3) 

present systems are based on list structures and languages that are 

particularly good in handling lists. Although Algol 68 falls short, 

in terms of llst processing facilities, of those languages that hove 

been used to construct algebraic manipulation systems it does however 

provide enough facilities for the construction of such systems. 

Additional numeric modes 

One of the alarming properties of the problems that have been solved 

by algebraic manipulation systems is the speed at which numeric 

coefficients expand and overflow the exact arithmetic capability 

of the host computer. An example of such a problem is the computation 

of the f and g series (5) of celestial mechanics which overflows a 

4.8 bit integer after 15 iterations. One solution adopted by a number 

of systems is to convert to floating point when overflow has occured. 

This solution is not ideal by any means as often the user of an algebraic 

manipulation system is interested in the patterns generated by his 

programs, thus it  would be a lot more difficult for a user to discern a 

paffern in 

• 400x + .  429x~2 + .444x'1'3 + .  455x74 

rather than 

2/5x + 3/7x72 + 4/gx't3 + 5/1 Ix' t4 

An alternative solution to the problem of integer overflow is to 

arrange that numeric coefficients con be represented in a numbe; of 

alternative integer forms of increasing maximum magnitude t thus a 

language such as Algol 68, which has the capability for additional 

numeric modes as well as the abil ity to switch between these modes 

via unions, would seem to be the answer. 



AB 4 5 p . 4 1  

An algebraic manipulation system, written in Algol 68R, has been developed to handle 

polynomials in arbitrari ly many indetermlnates with real or long int coefficients. 

It consists of a series of operators and procedures which operate on expressions 

defined by 

mode expression = re.~ term; 

mode term = struct ( re f [  ] element factor, coeff coeff, 

in._t.order, ref term next term); 

mode coeff -- union (real, rational); 

mode rational = struct (long ;nt  hum, denom); 

mode element = struct (Tnt atom, power) 

Where term describes a term in a polynomial and coeff describes the numeric 

coefficients in each term. The system was written with the aim of making the 

user interface compatible not only with the normal algebraic notation familiar 

to its potential users but with the numeric facil i t ies available in Algol 68. 

The system consists of a series of operators and procedures which can be separated 

into a number of categories: 

1) 

2) 

3) 

4) 

5) 

The common algebraic operations defined on polynomials 

Procedures for the input and display of polynomials 

Procedures for the integration and differentiation of polynomials 

Procedures for the numeric evaluation of polynomials and symbolic 

substitution in polynomials 

Procedures for the selection of polynomial terms based on a variety 

of criteria. 

AB 451). 42 

In order to illush'ate the system I shall take two problems and display the 

programs needed to solve them. 

1) The generation of Le~lenclre polynomials 

using the relation 

Pn(X) = (2n - 1)XPn_1(x ) - (n - 1)Pn_2(x) 

n 

where Po(x) = I and PI (x) = x 

and P (x) is the nth Legendre Polynomial n 

the prograrn is 

'BEGIN' 
'EXPRESSION' X = GENEXP("X"); 
[0:20] 'EXPRESSION' P; 
P[O]:= 'EXPRN' I; 
P[I]:: +X; 
PRINT C"P[O]:"); EXPOUT (P[O]); 
PRINT ("PIll="); EXPOUT (PIll); 
'FOR' I 'FffOM' 2 'TO' 20 'DO' 

'BEGIN, 
P[1]:=((21I-1)mX~P[I-1]-(I-1)~P[I-2])/i; 
PRINT (("P[,,, I, "]=")); 
E)~OUT (P[I]) 
'END' 

'END' 
'FINISH, 

'C' GENERATION OF THE FIRST 'C' 
'C' 20 LEGENDRE POLYNOMIALS 'C' 
'C' BY RECURRENCE RELATION 'C' 



2) The computation of the f and 9 series in celestial mechanics 

The f and g series are given by 

v~ f , w~ fn fn = ~ a  f - I  + ~-~n-, + ~.~ -1 - a gn-1 

gn = U~a n-1 + v ~ +  -1 + w~'~"~ n-1 +fn-1 

where u = -3ab, v = c - 2 b  2, w = - a b - 2 b c  

and go=0 

and f = 1 
O 

The program for this computation is 

'BEGIN' 
[O:~O]'EXPRESSION'F,G; 'C' 20 TERMS OF THE F AND G 
'EXPRESSION' A= GENEXP("A"), 'C' SERIES 

B= GENEXP("B"), 
C= GENEXP("C"), 
U= GENEXP("-3#A*B"), 
V= GENEXP("C-2mB~2"), 
W= GENEXP("-B*(A+2*C)"); 

F[O]:: 'EXPRN' I; 
G[O]:= 'EXPRN' O; 
PRINT ("F[O]="); EXPOUT (F[O]); 
PRINT ("G[O]:"); EXPOUT (G[O]); 
'FOR' I 'TO' 20 'DO' 

'BEGIN' 
F[I]:: DIFF(F[I-I],A)*U + DIFF(F[I-I],B)*V + DIFF(F[I-I],C)~W 

- G[I-I]*A; 

G[I]:= DIFF(G[i-I],A)mU + DIFF(G[I-II,B)~V + DiFF(G[I-I],C)*W 
m F[I-I]; 

PRINT (("F[", I, "]=")); EXP~UT (F[I]); 
PRINT (("O[", I, "]:")); EXPOUT (G[[]); 
'EfiD 

'END' 
'FINISH' 

'C' CALCULATION OF THE FIRST 'C' 
,Ct 

t C , 

AB 45p.  43 

AB 45p.  44  

1. Riet R P Van de 

'ABC Algol : A language for formula menipulation systems - Part I The language' 

Mathematical Centre Tracts No 46, 1975. 

2. Colllm G E 

'The SAC1 system for algebraic manipulation' 

Proc. 2rid symposium on symbolic and algebraic manlpulatim 1971. 

3. Daniclc I, Long F W 

'Algebraic manipulation of polynomials in several indeterminates' 

Pron. conference on application of Algol 68, 1976. 

4.. Barton D, Baume S R, Fitch J P 

'An algebra system' 
I 

Computer Journal. Vol 13, No 1, 1970. 

5. Barton D, Bourne S R, Fitch J P, Harton J R 

'Some applications of the Cambridge Algebra System' 

University of Cambridge Computing Lab Technical Manual March 1971. 

6. Heam A C 

'REDUCE 2 users manual' 

U of Utah, Salt lake City, Utah. 2nd edtn 1973. 



AB 45p.45 

AB45.4.7 

An Algorithm for the Execution of Limited Entry Decision 

Tables in ALGOL 68 

T h e  ALGOL 68  p r o c e d u r e  s h o w n  i n  F i g .  1 i s  u s e d  f o r  t h e  

e x e c u t i o n  o f  l i m i t e d  e n t r y  d e c i s i o n  t a b l e s  d e s c r i b e d  

b y  t h e  m o d e s  a l s o  s h o w n  i n  F i g .  1 .  T h e  p r o c e d u r e  i s  

t h e  k e r n e l  o f  a m i x e d  e n t r y  d e c i s i o n  t a b l e  s y s t e m ,  

w r i t t e n  b y  t h e  a u t h o r  a n d  e m b e d d e d  i n  A l g o l  6 8 C ,  w h i c h  

d e a l s  w i t h  m o r e  g e n e r a l  d e c i s i o n  t a b l e s ,  h a s  e x t e n s i v e  

s t a t i s t i c s  g a t h e r i n g  a n d  t r a c e  f a c i l i t i e s ,  a n d  a l s o  

c o n t a i n s  p r o c e d u r e s  u s e d  i n  c h e c k i n g  f o r  c o m p l e t e n e s s ,  

a m b i g u i t y ,  a n d  r e d u n d a n c y .  T h e  a c t u a l  p r o c e d u r e  u s e d  

i n  e x e c u t i n g  l i m i t e d  e n t r y  d e c i s i o n  t a b l e s  a n d  t h e  m o d e s  

i n v o l v e d  may  b e  o f  i n t e r e s t  t o  p r o g r , m m e r s  who a r e  

i n v o l v e d  i n  t h e  p r o d u c t i o n  o f  ALGOL 68  p r o g r a m s  c o n t a i n i n g  

a l a r g e  n u m b e r  o f  I F . . E L S E . . F I  c o n s t r u c t s .  

The procedure has been modified for publication in two 

w a y s .  F i r s t l y  t h e  s t a t i s t i c s  a n d  t r a c e  g a t h e r i n g  p r o c e d u r e s  

w h i c h  a r e  u s e d  t o  m o n i t o r  t h e  e x e c u t i o n  o f  t h e  d e c i s i o n  

t a b l e  h a v e  b e e n  r e m o v e d .  S e c o n d l y  t h e  n o n - s t a n d a r d  way  

t h a t  ALGOL 68C h a n d l e s  a c c e s s  t o  i n d i v i d u a l  c h a r a c t e r s  i n  

a s t r i n g ,  v i a  a n  ELEM o p e r a t o r ,  h a s  b e e n  c h a n g e d  t o  n o r m a l  

s t r i n g  s u b s c r i p t i n g .  

D.C. Ince, 
Faculty of Mathematics, 
The Open University, 
W a l t o n  H a l l ,  
M i l t o n  K e y n e s ,  
B u c k s .  

AB ~Sp.q6 

# modes used in decision tables # 

MODE CONDITION = PROC BOOL; 
MODE ACTION : PROC VOID; 
MODE ACTOECOND= UNION(ACTION,CONDITION); 
MODE TABROW = STRUCT(ACTORCOND pr,STRING entry); 
MODE DECISIONTADLE = [maxrow]TABROW; 

# procedures used for executing deolsion tables # 

PROC execute =(INT entrycolumn,DECISIONTABLE table)VOID: 
#executes the decision table held in table, entrycolumn # 
#is the rule number at which the executlon starts # 

BEGIN 
INT column:=entrycolman,flnalcolumn:=UPB(entry OF table[l]), 

finalrow:=UPB table,row; 
BOOL eonditlonflag,invokeflag:=FALSE; 
WHILE column<=finalcol~mm AND NOT invokeflag DO 

c o n d l t i o n £ 1 a g : =  TRUE;row:=1; 
WHILE row<=flnal row AND c o n d l t i o n f l a g  DO 

IF ( e n t r y  OF t a b l e [ r o w ] ) [ c o l u m n ]  / = . _ .  THEN 
CASE pr OF table[row] IN 

(CONDITION c):(BOOL f l : = ( e n t r y  OF t a b l e [ r o w ] ) [ c o l u m n ] = " T " ;  
condltlonflag:=oonditionflag AND (IF £i THEN 

C ELSE NOT c FI)), 
(ACTION a):(a;invokeflag:=TRUE) 

F.SAC 
FI ;  
row+: = I 

OD; 
co i u m n ÷ :  = I 

OO 


