ISSN 0084-6198

Algol Bulletin no. 44

MAY 1979
CONTENTS PAGE
ABHL O Editorfs Notes 2
ABA4Y 1 Announcements
ABUL 1.1 An Implementation Model of the ALGOL 68 Transput 2
AB4Y.,1,2 The Revised MC Test Set 3
ABUY 1.3 TORRIX y
AB4Y 1.4 The Revised Report in German y
AB4Y4,1.5 An Axiomatic Semantic Definition of ALGOL 68 y
AB4Y4 .1.6 Other reports available 5
ABUY .3 Working Papers
ABUY . 3.1 Commentaries on the Revised Report 6
ABUY 4 Contributed Papers
AB44.4,1 Hanno Wupper, Experiences with ALGOL 68 Transput 8

AB44.4.2 C, J. Cheney, C. H. Lindsey, L. G. L. T. Meertens ahd

H. Wupper, Changing Line Lengths in Random Files 15
ABUL 4.3 H. B. M, Jonkers, A Finite State Lexical Analyzer for

the Standard Hardware Representation of ALGOL 68 16
AB4Y4 4.4 ¥V, J. Rayward-Smith, The Use of ALGOL 68 Pattern

Matching to Describe a Formal Logic System 52
ABL4Y4 4.5 Vera Ajueva, A. N. Maslov and V. B. Yakovlev

A Schema for reading data in Formatless Input 63

AB U4p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of
IFIP:
"The opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that might arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIPY,

Facilities for the reproduction and distribution of the Bulletin have
been provided by Professor Dr. Ir. W. L. van der Poel, Technische
Hogeschool, Delft, The Netherlands. Mailing in N. America is handled by the
AFIPS office in New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $7 per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any currency (a list of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency is absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $3 each. However, it is
regretted that only AB32, AB34, AB35, AB38, AB39, AB41, AB42 and ABU3 are
currently available. The Editor would be willing to arrange for a Xerox copy
of any individual paper to be made for anyone who undertook to pay for the
cost of Xeroxing.

AB Wlp.2

AB44 .0 EDITOR'S NOTES

The WG, and also its ALGOL 68 Support Subcommittee and its Transput Task
Force, met in Summit, New Jersey, at the beginning of April.

On the Algol 68 front, the major event was the acceptance of the
Implementation Model of the ALGOL 68 Transput (see ABHU.1.1 in this issue).
This is intended to make it easier for all implementors of the language to
incorporate a correct, compatible and efficient transput system into their
compilers. Hans van Vliet worked for one and a half years in modeling and
remodeling the transput section of the Revised Report in such a way that it
can now be implemented efficiently, still preserving virtually all of the
external specifications of the Revised Report. Moreover, his description has
the virtues of a good textbook for implementors: it is clear, understandable
and precise. The model is based on a buffer concept which provides the
proper interface with arbitrary operating systems as they exist nowadays. In
recognition of his great achievement, the Model is now always informally
referred to as the "Hansput".

Another document accepted at the meeting was the Revised MC Test Set, by
D.Grune (see ABUY.1.2 in this issue). Originally, this Test Set was prepared
as an acceptance test for the CDC ALGOL 68 compiler. It has now been
extensively revised, with many new programs added. It is now up to all users
who are contemplating purchasing ALGOL 68 compilers to insist that the Test
Set be run and an agreed standard for conformance obtained. Only in this way
will we gradually force implementors to move towards correct implementations
of the language.

Finally, two more Commentaries on the Revised Report were released (see
ABHY,3.1 in this issue). Now, at last, things seem to have become fairly
quiet so far as the appearance of fresh bugs in the Report is concerned.

In spite of all this ALGOL 68 activity, the main part of the meeting was
taken up with papers on programming methodology - part of the continuing
search for that elusive language "ABSTRACTO". It was decided that the next
step should be to prepare an agreed set of example problems against which
each proposed "ABSTRACTO" language should be tested. In fact, what we need
is lots of concrete ABSTRACTO examples to look at.

At this point, I must make my usual plea for material for the next issue.
This issue contains two papers which are more or less in the category of
"algorithms", such as 1 asked for in ABU41. More material of the same sort
would be particularly welcome.

AB44 .1 Announcements

AB44.1.1 Apn Implementation Model of the ALGOL 68 Transput,.

This report has been written by J.C. van Vliet on the request of the Task
Force on Transput, which was set up by the Subcommittee on ALGOL 68 Support
of IFIP WG2.1. It aims at a precise description of the transput of ALGOL 68,
conforming with section 10.3 of the Revised Report. Whereas section 10.3 of
the Revised Report describes the jintention of transput, the emphasis in this
report is on implementability.

A variety of ALGOL 68 implementations exist or are near completion. They
all support some kind of transput, although they all differ slightly from
each other and from the Revised Report. This diversity renders the transfer
of programs from one implementation to the other very difficult, if not
virtually impossible.

AB Ulip.3

The existence of so many different transput systems may to some extent be
due to the fact that the definition as given in the Revised Report does not
really facilitate implementation of the transput. Each implementor again has
to struggle his way through the transput section and locate the problems
with the particular operating system.

The approach taken is similar to the one in the Revised Report: the
transput is described in pseudo-ALGOL 68. The pseudo-ALGOL 68 part can be
considered as a language extension which is reasonably implementable. The
primitives underlying the model are not defined in ALGOL 68. Instead, their
semantics are given in some kind of formalized English, resembling the way
in which the semantics of the Revised Report are defined. One advantage of a
description in pseudo-ALGOL 68 is that it can 1largely be tested
mechanically. It has been the intention that the ALGOL 68 text, after
suitable substitution of the pseudo comments, could be compiled, thereby
automatically creating part of the runtime environment.

This report was accepted at the recent meeting of WG2.1 held in Summit,
New Jersey, and the WG resolved to ask its parent committee, IFIP TC2, to
authorize the following statement for release with it.

This implementation model of the ALGOL 68 transput has been
reviewed by IFIP Working Group 2.1. It has been scrutinized to
ensure that it correctly interprets the transput as defined in
section 10.3 of the Revised Report. This model is recommended as
the basis for actual implementations of the transput.

Copies of the Report can be obtained from the Mathematisch Centrum, 2e
Boerhaavestraat 49, 1109 AL Amsterdam at a price of HF1 27 (plus postage).
Its full title is

Mathematical Centre Tracts No. 111
ALGOL 68 Transput Part II - An Implementation Model.
by J.C. van Vliet,
(Part I, to be published later, will contain some of the background to and
motivations for the model. The two parts taken together will constitute Hans
van Vliet's doctoral thesis.) The text of the model is also available in
machine-readable form,

ABU4.1.2 The Revised MC Test Set,

The Revised MC Test Set comprises 190 ALGOL 68 programs, in part correct
ones, in part intentionally incorrect ones. They are designed to explore the
full range of ALGOL 68 language features, and include many attempts to trip
the compiler up or to uncover incorrect short-cuts.

Many of the programs are pathological and should not be considered as
representative of ALGOL 68 programming style. With this in mind, almost all
the programs are worth while reading, some as puzzles, some for the good
programming features they contain, some for their not widely known
programming techniques and a few for their good style.

The test set is not complete, firstly because such a product is never
complete: there is no exhaustive testing and one cannot cater for every
contingency. Secondly, a few aspects of the language are under-represented
(e.g. SHORT and LONG values and bulk I/0). However, if a compiler processes
the test set well and also works well on the daily stream of average
programs, it may be regarded as a very good compiler. Certainly, all
implementors should be encouraged to use it and, especially, to report in
their accompanying documentation how it behaved.

The Test Set was accepted at the recent meeting of WG2.1 held in Summit,
New Jersey, and the WG resolved to ask its parent committee, IFIP TC2, to

AB 4lp.l4

authorize the following statement for release with it.
This ALGOL 68 Test Set has been reviewd by IFIP Working Group
2.1, which wishes to recommend it as a valuable means of testing
implementations of ALGOL 68.

Copies of the Test Set will shortly be available from the Mathematisch
Centrum, 2e Boerhaavestraat 49, 1109 AL Amsterdam. It will also be available
in machine-readable form on most reasonable formats of magnetic tape.

AB44.1.3 IOQRRIX.

At its meeting in Jablonna, Poland, in August 1978, IFIP WG2.1 authorized
the release of the following statement.

The 1library package TORRIX comprising definitions for
handling vectors and matrices in ALGOL 68, as published in the
Mathematical Centre Tracts series, has been scrutinized to
ensure that:

a) It strictly conféorms to the definition of ALGOL 68.

b) It is consistent with the philosophy and orthogonal
framework of that language.

e) It addresses a significant application area in a
comprehensive and appropriate manner.

In releasing this statement the intention is to encourage the
incorporation of this library package in 1library preludes of
ALGOL 68 implementations.

TORR1IX is published as Mathematical Céntre Tracts No. 86. Volume 1 is
currently available. Volume 2 will be available later in the year. See
AB42.1.5 for further information.

- ABU44 1.4 The Revised Report in German,

The Revised Report on the Algorithmic Language ALGOL 68 has now been
translated into German by Prof., Immo O. Kerner of the Paedagogische
Hochschule Dresden. It is published by Akademie-Verlag, 108 Berlin,
Leipziger Str. 3-4 (list number 202. 100/401/78), under the title
"Revidierter Bericht uber die Algorithmische Sprache ALGOL 68",

Although the text is in German, all hyper-rules and paranotions are given
in English, as is the standard-prelude (except for comments).

AB44.1.5 An Axiomatic Semantic Defipition of ALGOL 68,

This doctoral thesis, by Richard Schwarz, is obtainable from the Computer
Science Department, School of Engineering and Applied Science, University of
California, Los Angeles, CA 90024, so long as stocks last (after that, it
should be obtainable in microfiche from NTIS, Springfield, Virginia 22151).

The report gives a formal axiomatic definition of a major subset of ALGOL
68. The definition, roughly the same length as the axiomatic definition of
EUCLID, handles many features generally considered to be serious impediments
to program verification. The small set of very general rules governing the
semantics of ALGOL 68 leads to a very clean axiomatic definition, defining
an extraordinarily expressive language.

It should be reduired reading for anyone who still believes that side

AB Lip.5

parameters and unrestricted aliasing of names are absolute bars to program
verification. They are not. All necessary axioms are given here and, because
of the orthogonal structure of the language, the axiomatic definition is
surprisingly short.

AB4Y.1.6. Qther reports available,

The following reports are available from the Mathematisch Centrun, 2e
Boerhaavestraat 49, 1109 AL Amsterdam.

AFLINK - A new ALGOL 68 - FORTRAN interface, by H.J.Bos and D.T.Winter
(Report No. NN 17)

(a tool for use with the CDC ALGOL 68 compiler permitting, especially,
ALGOL 68 procedures to be passed as parameters to FORTRAN
subroutines).
A Modules and Separate Compilation Facility for ALGOL 68 by C.H.Lindsey and
H.J.Boom (Report No. IW 105/78 - HF1 6 plus postage)
(as already published in ABU43.3.2).

AB Ulp.6

ABUU 3,1
Commentaries on the Revised Report

The following commentaries are issued by the Sub-committee ~on ALGOL 68
Support, a standing sub-committee of IFIP WG 2.1. They deal with problems
which have been raised in connection with the Revised Report on the
Algorithmic Language ALGOL 68, and mostly take the form of advice to
implementers as to what action they should take in connection with those
problems. These commentaries are not to be construed as modifications to the
text of the Revised Report.

Note that commentaries are not being published on trivial misprints.
Those concerned about such misprints (and especially those preparing new
printings of the Report) should apply to the Editor of the ALGOL Bulletin
for the latest list of agreed Errata.

{{Commentaries 1 through 30 have already been published (see ABU2.3.1 and
AB 43.3.1). The two new commentaries published here were accepted by the
Support Sub-committee at its meeting in April 1979.}}

31) Overwriting of existing books and control of the write mood.

The Report provides that, where both "put" and "get" are "possible", an
existing book with sequential access may be read up to some arbitrary point
and overwritten with new information from there onwards., If a given
implementation can only overwrite from the beginning of a line, or even from
the start of the book, it should be arranged that "put possible" (which is a
procedure) only returns TRUE when the current position is at a place from
which overwriting may commence.

However, even if "get" is not "possible" (but “put"™ is), the Report
permits such an arbitrary point to be reached by suitable calls of "space",
"newline" and "newpage". However, these calls can only be implemented by
reading the book from the beginning, counting characters and line and page
terminators, and this is impossible by hypothesis. It is indeed strange that
even "put(f, newline)" causes the book to be read in order to skip a line.
It is even stranger that there is no way in which the first line of an
existing book can be overwritten with an empty line. These difficulties all
stem from the fact that it is the putting of an actual character which
causes the logical end of the file to be retracted to the current position
{10.3.3.1.b}. Implementers are therefore advised to test in "set write mood"
(10.3.1.4.3) for the case where the logical file end is beyond the current
line in a sequential access book, and to retract the logical file end there
rather than in "put char". Moreover, it should now be the case that all
calls of "put" and "putf", even "put(f, ())", should set the write mood and
bring about this effect. To this end, implementors should always call "set
write mood" at the start of "put* (10.3.3.1.a) and of "putf* (10.3.5.1.a)
{ just after the tests for "opened" which are currently provided}. Very few
programs will be changed in meaning as a result of this and, moreover, the
precise effect defined by the Report can always be obtained by writing
"get(f, newline)" (in situations where "get" is "possible", of course).

32) On the scope of the particular-program.

According to the letter of the Revised Report the first environ created
during the elaboration of the ENCLOSED-clause of the particular-program is
newer in scope than the environ of the user-task in which it is contained.
This would imply that the heap scope (see also Commentary 3) is newer than
the scope of the variables (in particular "“stand in", "stand out" and "stand
back") declared in the particular-prelude. As a consequence, the elaboration

AB Uip.7

of, e.g., the call "open(stand in, "", stand in channel)" in the
particular-prelude would result in scope violation and thus be undefined.
This is, however, not the intention. In effect, the environ in question
should- be considered nonlocal, so that the scopes concerned are the same.
Also, the meaning of the following particular-program should be well
defined:

BEGIN on logical file end(stand in, (REF FILE f)BOOL: GOTO 1lfe);

DO STRING s; read((s, newline)); print((s, newline)) OD;
1fe: print(nhneorssn)
END

AB 44p.8
AB44. 4.1

EXPERIENCES WITH ALGOL 68 TRANSPUT

PARTS I,1II :

Critical remarks on Revised Report's transput section

by Hanno Wupper * July 1978

Preliminary remark

1f, from the followiny pages, readers not familiar with Algol 68 might
get the 1impression that part 10.3 of the Revised Report is a most useless
and confusing document written by complete ignorants, the author must
apologize and stress that this was not at all his intention. A useful and
comfortable transput system has been defined there. The definition consists
of a set of Algol 68 programs describing transput activities down to the
handling of single characters in the file (or book, as it is called there),
thus making cleair beyond doubt what has to happen in any particular
situation. Algol 68 transput, as well as its method of definition, is in a
much better state than the definitions of 1/0 systems of various other

languages and cannot be ignored by anyone working on operating systems or
higher Llevel languages.

Not before we actually started an implementation we noticed several
disadvantages. The offensive tone of this paper is a result of
disappointment due to expectations too optimistic. If some of the
statements in this papers can be proved wrong, all the better. The author
wishes to express his thanks to J.C.van Vliet from the Mathematical Centre,
Amsterdam and to his colleages G.Baszenski, J.Krieger, M.Peuser, N.Voelker,
C.-G.Warlich and, above all, Prof.H.Ehlich, who all found time for long
discussions of transput. Source of experiences was the work on an
implementation for the TR 440, which would have been impossible without the
fine Algol 68C bootstrap-kit from Cambridge University and J.C.van Vliiet's
machine independent transput system.

¥ pddress: Rechenzentrum der Ruhr-Universitaet Bochum,
Poctfach 102148, D-~4630 Bochum. W. Germany

AB 44p.9
Part I

UNDERSTANDING ALGOL 68 TRANSPUT

General considerations

1. Algol 68, defined by programs written in three different languages

In his remarks "On the Revised Algol 68 Report” [Algol Bulletin
AB36.4.3] M. Sintzoff says that rewriting the old Report had been organized
as a programming project. Indeed the Revised Report can be considered as a
program defining the Algol 68 machine. It consists of three parts, each
written in a different language:

- Synhtax, i.e. the set of program texts accepted by the Algol 68
machine is defined by the rules of a two~-level van Wijngaarden grammar.
Such grammars 1in principle are powerful enough to simulate any Turing
machine, thus allowing the occurrence of several indecidabilities; but in
the Revised Report they have been used with care: Some '"general
hyper-rules'" [RR 1.3] provide useful structured programming tools, and
most of the syntax part certainly forms an elegant high level program with
well chosen "identifiers" (i.e. paranotions).

- Semantics of the Algol 68 machine is defined by programs "expressed
in natural language, but making use of some carefully and precisely
defined terms and concepts" [RR 0.1.1] (cf. Sintzoff [AB36.4.3 p311). The
structure of the semantics parts is composed from serial, conditional, and
case constructs and is closely related to the structure of the
corresponding syntax rules.

= Only a nucleus of the Algol 68 machine, consisting of comparatively
few "basic constructs" is defined by these means. The machine then is
extended by a program written in Algol 68 itself: The important chapters
on the standard prelude [RR 10.2] and transput C[RR 10.3] mainly consist of
operator- and procedure~declarations.

To implement Algol 68 on an arbitrary machine one should have to _do
nothing but provide translators for two-level grammars and for the special
subset of natural language, and then simply "run'" the Report.

Unfortunately this is a bit difficult.

Arbitrary two-level grammars cannot be automatically converted to a
deterministic recognizer, and the special ygrammar in the Report seems not
to be of a type for which parser constructors have been developed (cf.
Deussen).

At Lleast, however, it does not seem too difficult to hand-translate the
rules to e.g. an equivalent affix grammar. (Affix grammars luckily may be
automatically converted to an executable program, cf. Koster, Watt.)

Though as we see the definition of syntax and semantics as given in the
Report is not suitable for automatic translation, it is clear and precise
and telis the implementor exactly what to do - though, of couse, "it may be
difficult to understand to the 'uninitiated' reader".

AB 44p.10

The standard prelude as given in part IV of the Report [RR 10.21 in form
of several Algol 68 routine texts serves as a useful implementation model:
The method of definition here presents no difficulties; some of the
operations might even be implemented by translating parts of the Report.

The transput section, however, L[RR 10.3] presents a somewhat different
situation. It again consists of Algol 68 declarations and again the method
of description is understood easily; but then the implementor is left with
lony programs the intention of which tends to remain obscure. The
additional pragmatic remarks sometimes are more confusing than
enlightening. Moreover, some of the procedures even seem to contain bugs.

In the following chapter we will have a closer look at why this section may
be of Little help to the implementor.

2. Initial problems: Finding out what to implement

When an implementor who has not been familiar with Algol 68 transput for
years, studies section 10.3 of the Revised Report he finds himself
completely lost.

At first he does not understand what books, channels, and files really
are and what is the difference between them. He probably knows all about
his own operating system and about the transput systems for several other
proyramming languages; but the pragmatics of the Report give Little help to
match what he knows with what he is to implement for his Algol 68 system.
Probably he sooner or later gets some idea that a "book" is more or Less
what is called file in most operating systems, and he surely will find out
that that a "file" is no more than a kind of status vector, describing the
momentary situation of transput for an open book. But he gets quite mixed
up when he wants to know what a "channel" really is. The pragmatics L[RR
10.3.1.2] say something about physical devices, possibly useful in nuclear
physics and that "a channel is a structured value whose fields are routines
‘returning truth values which determine the available methods of access to a
book Llinked via that channel" - which latter knowledge may as well be
extracted from the definition of mode .CHANNEL, where it is expressed more
clearly LCRR 10.3.1.2.al. One also learns that a channel has some 'channel
number”, which slightly reminds the reader of Fortran's unit numbers. (The
pragmatics say nothing about it, nor seems it to be used anywhere in the
Report.)

A channel "corresponds to one or more physical devices" L[RR 10.3.1.2] -
but 1in modern operating systems the user does not need to know about
physical devices. Maybe a channel really is a unit number plus some useful
enquiry routines? But then one learns that several files may be open at one
and the same channel a time. Perhaps it is safest to have just one channel
and code everything in the file idf, or to provide one channel for each
fortran logical unit number and allow the idf to be the empty string only?
The purpose of channels remains in the dark.

When after all one feels sure what to do with them one can start to
implement a transput system. It will, of course, have to behave exactly as
described by the Report. But it turns out to be more than a challenging
puzzle to find out what really is described there. What one finally has
found out often is rather astonishing and not what programmers might
expect.

0f course this is a general programming problem. As soon as a Llanguage
contains as powerful constructs as arithmetic operations, Lloops, and
conditional expressions it may become indecidable what a program really
does and whether it computes a certain given function.

AB 44p.11

Therefore, care should be taken first to specify the problem, then to
write a well structured program containing assertions to prove its
correctness. Most programs are written the other way round: The
programmer's vague idea of what the code should Look Like 1is punched in;
during the '"testing phase” several conditional statements are added, and
finally the problem is adjusted to the behaviour of the program.

Several important languages are known to be defined as '"what the
compiler accepts', and some unexpected unorthogonal restrictions in the
Fortran standard may have resulted from the same technique.

Sadly enough, the transput section of the Revised Report gives a simitar
impression - it even seems to contain serious bugs. Several presumed errors
and other problems are listed in an interesting paper compiled by van Vliet
COWA 11/11. We will mention only a few of them:

- The .BEYOND operator used in establish [10.3.1.4.bl does not test
whether a given position is "beyond"” another one.

v

- Even though a special "primal environ” has been introduced some

transput calls will violate scope restrictions.

- By definition of mode .INTYPE [10.3.2.2.d] it is not possible to
input values of e.g. mode .STRUCT(.BOOL b, .STRING S).

- Input and output are incompatible in several cases.

Hopefully, the programming errors and misprints will be corrected by
some official document; more dangerous are the cases where the behaviour of
the routines is obscure, or unexpected, or not realistic: Implementors witl
be Llikely to deviate slightly or less slightly from the Report. There are
already several implementations of different transput systems, not all of
them being super- or sublanguages.

But even if one wants to stick to the Report absolutely and implement
the transput routines exactly as they are printed there one is in a mess:

Most parts of transput activities are performed by the operating system.
What remaines to be done by lLanguage dependent routines, besides conversion
of values, is the testing of conditions (or ‘events"), catling event
routines, providing default actions, etc. In Algol 48 these actions are
strongly connected with routines provided by the wuser. They are quite
complicated Llogically, but not critical in the sense of CPU time, so it
would be sensible to copy them from the Report as they are. However, it
turns out to be impossible to draw a line dividing chapter 10.3 of the
Report into two appropriate parts:

Especially the Layout routines are a conglomerate of actions belonging
to all the different Layers in an operating system, from user level right
down to the physical device.

One cannot copy the routines from the Report; so one has to write a
completely new transput system; so one is forced to understand what is
defined by the Report, or, more precisely, what is i nt e nd e d there.

Studying the transput section and finding out its intention turns out to
be a source of not "innocent merriment” but innumerable surprises.

Possibly the authors had in mind a special, Limited machine or operating
system with some very particular restrictions. The decision to use the same
set of Llayout routines for both reading and writing causes additional
restrictions and problems.

AB 44p.12

PART I1

ALGOL 68 TRANSPUT CONSIDERED INSUFFICIENT

The following chapters try to show that even if all implementation
problems are solved one cannot feel too happy because the result will be
disappointing.

While implementing Algol 68 transput on our TR440 we came along a number
of problems far more serious than the above mentioned difficulties in
connection with the method of description: transput, implemented exactly as
it 1is defined in the Report contains a number of unorthogonal restrictions
that will surprise the user and possibly give him the impression that Algol
68 possesses one of the most old-fashioned transput systems he finds on his
machine. Handling of random access will be inefficient and undesirable,
even 1in a " superlanguagé" where some of the unnecessary restrictions have
been dropped.

4. Superfluous restrictions

The attributes set possible, get possible, put possible, and
bin possible ought to be mutually dindependent. There is no reason why
changes between char mood and bin mood should be forbidden whenever .NOT
set possible, or why reading and writing may not be alternated in the
singular case of a sequential file used for binary transput.

5. Important types of books not considered at all

The texts of books for Alyol 68 always have to resemble a .REF .FLEX [J
.FLEXx [l .FLEX [J1 .CHAR; each character being identified by a triple of
integers, the page, Line, and character numbers. Positions inside the
logical file run from .P0S(1,1,1) and never contain gaps.

Modern operating systems provide books of a somewhat different structure
(sometimes called "index sequential" or "sequential keyed"): There are
"record keys" rather than lLine numbers, taken from an ordered set of, in
general, strings or sometimes integers. Arbitrary gaps between keys inside
the Llogical file are possible. Such books may be read sequentially or set
to a certain line or to the first existing line after a certain key. Lines
may be of arbitrary length. Usually there are no pages, but the concept may
be generalized by allowing arbitrary tree structure rather than adding just
one more dimension for pages.

Books of that kind or at least useful special cases can be handled by
several programming languages and operating systems. The special case with
integral keys 1is quite common, even to certain Basic implementations. Due
tc its Limited nature, standard Fortran I/0 can be extended to allow
nandlinyg of such books in a straightforward way. The more complicated Algol
58 transput, however, suggests more than one way to extend the effects of
-newline, space, or set, and certainly there are several possibilities for
acditionai layout routines and events (on undefined record, delete). Some
official document with appropriate recommendations 1is needed urgently,
otnerwise there soon will be ali kinds of differing implementations.

AB 44p.13

Another type of book not provided for is the good old magnetic tape:
Books on tape may be read backwards! (In most operating systems that is
extended to all sequential files on background storage. In Algol 68 the
routines space/backspace are not really symmetric and there are no reverse
versions of newline or newpage. The effect of Fortran's BACKSPACE can be
achieved by no means. Last not least there are no hints how to make use of
a dialogue terminal.

6. Random access condemned to inefficiency

The main difference between sequential and random access is that in the
latter case the logical_file_end always is close to the character written
Last, while with random access Lines may be overwritten without destroying
the information on subsequent lines. The Report tries to make users benefit
from the advantages of random access as much as possible -~ with the result
that after each call of newline or set, the old contents of the new Line
must be available. There are no means to express that one wants to
overwrite an entire Line without reading it first, though that is the case
in most applications.

If the text of a book actually is a multiple value accessible to the
program this 1is, of course, no problem. In a real Life operating system,
however, where records have to be read from background storage ("or even
from a set up in nuclear physics"), it can be too expensive. Perhaps pairs
of routines Like set to(p,{,c) vs. get _from(p,l,c) might be what is needed
(with space writing blanks if a Line was positioned by set_to).

7. uUnrealistic behaviour of compressible random access books

Except for the restrictions and inefficiencies mentioned above, all
incompressible and all sequential books behave sensibly. Now in
[RR10.3.1.6.aa]l a most interesting pragmatic remark can be found:

"Although the effect of a channel whose books are both compressible
and of random access is well defined, it is not anticipated that such a
combination is Llikely to occur in actual implementations.”

At first glance no harm seems to be in that statement, though, of
course, assumptions on what manufacturers might provide in an operating
system could be hazardous. Compressibility is orthogonal to and independent
of random accessibility. Users of our TR440 in fact have been declaring
nearly all their books compressible with random access for the Llast eight
years. Both properties are implemented efficiently, and when the price is
low one usually chooses the best available.

The shock occurred when, after starting an implementation of Algol 68
transput, we had a closer lLook at what actually is well defined there: Once
a line has been written to a random access book its Llength cannot be
changed any more (exept by scratch), even if the book is compressible. Just
look at the last example of [RR 10.3.1.3]: It will not work if set possible
(f1) .AND compressible(f1) and if the Lines of the book happen to be
shorter than int width,

This is a severe restriction and quite against the philosophy of random
access.

AB 44p.14

CONCLUSION

1f AlgolL 68 is meant to be a serious alternative to other existing
languages, a revision and extension of transput is needed.

It should be stated here that C.H.Lindsey's recent article "Algol 68 and
your friendly Neighbourhood Operating System" [AB 42.4.4 p.22] probably
will be of great help to all implementors. Lindsey gives a comprehensive
overview of implementation problems and possible solutions. Indeed many of
the problems mentioned occurred to us during the Last year. We found
similar solutions, but not without Long discussions and a Lot of thinking.
Most of the problems we felt unable to solve, however, are not dealt with
by Lindsey.

Literature

P.Deussen: A decidability criterion for
van Wijngaarden Grammars,
Acta Informatica 5, 353-375 (1975)

C.H.A.Koster: Affix grammars, in: Algol68 Implementation,
North Holland, 1971

D. A.Watt: Analysis-oriented two-level grammars,
Ph.b.thesis, TU Berlin 1974

van Wijngaarden et al.: Revised Report on the Algorithmic
' Languaye Algolés8,
Acta Informatica 5, Fasc.1-3, 1975

AB WUp.15

ABYY 4,2
Changing Line Lepngths in Random Files,

C.J.Cheney (University of Cambridge).
C.H.Lindsey (University of Manchester).
L.G.L.T.Meertens (Mathematical Centre, Amsterdam).
H.Wupper (Ruhr University).

In a book that is both random access and compressible, the lines (and
pages) may become of any length up to the physical limit when it is first
written by sequential means (the only way to move the logical file end away
from the position (1,1,1) where it is left by "establish"). After that,
there is no way in which individual lines (or pages) can be shortened or
lengthened. Implementers whose operating system provides a:convenient system
for doing this may care to provide an environment enquiry "clip 1line
possible", and to implement the following "clipping" superlanguage feature.

In addition to the logical end of file pointer {10.3.1.6.cc} maintained
by the implementer, let there be an additional "local logical end" pointer
which points to some position in the current line and which normally points
to the end of the line unless the logical end of file is in that line, in
which case the two pointers coincide.

Let a procedure "clip line", of mode PROC(REF FILE)VOID, be provided
whose effect, on books and channels where its use is permitted, is to set
"write mood" and then to expand the current line to some physical limit (as
in the pseudo comment in "put char" {10.3.3.1.b+25}) and to set the logical
end to the current position. Subsequent calls of "put" within this line push
the local end forward just as is done with the logical end of file in "put
char" at present {10.3.3.1.b+21}. The contents of the line between the local
logical end and the physical end are inaccessible (calls of the "on line
end” event would be made), and calls of "space" in this area write blanks.
Whenever the logical file end is within the current line, the two logical
file pointers are always moved together.

As soon as the line ceases to be current (due to a call of "newline" or
"set" or even "close"), the line is compressed to wherever the local logical
end has now reached (or, if the book is not "compressible", it is filled
with blanks to its physical end). Thus, a user who wishes to rewrite a line
in the middle of his random-access file "set"s to the start of the line (or
to the middle of it if he only wishes to rewrite the last part of it) and
calls "clip line". He then "put"s new characters as required and in due
course when he calls "newline" or "set"s elsewhere, the 1line will be
rewritten with its new contents and (if "compressible") its new length.

Although it is not necessarily suggested that the "clip line" facility
should necessarily be possible on books and channels other than those for
which "compressible", "put" and "set" are all "possible", it may be observed
that its properties are in fact well defined in other cases (and useful
applications can even be imagined). Also, it is clear that "clip page" and
"elip file" facilities could also be defined (and even implemented) in an
entirely analagous manner.

AB 44p.16

AB44 ., 4.3 A Finite State Lexical Analyzer for the Standard

Hardware Representation of ALGOL 68.

by H.B.M. Jonkers

(Mathematisch Centrum, Amsterdam)

ABSTRACT

A finite state lexical analyzer for ALGOL 68 programs written in the
standard hardware representation is described. The analyzer is written in
a very simple language, allowing semi-mechanical tramnslation to an
arbitrary language. The whole language, including format-texts, is dealt

with.

KEY WORDS & PHRASES: ALGOL 68, lexical analysis, finite state machine,

semi-mechanical translation.

1. INTRODUCTION

For two reasons the lexical analysis of ALGOL 68 programs is not as
trivial as might be expected. First of all at some places (e.g., TAO-
symbols) the lexical structure of ALGOL 68 is rather awkward. Secondly
ALGOL 68 programs can be represented in different stropping regimes [l1]. A
lexical analyzer for ALGOL 68 featuring all three stropping regimes has
already been published [2]. Apart from the deviations from [1] mentioned in
the next paragraph, the lexical analyzer described here differs from [2] in
the following points:

(1) It basically is a finite state machine. This allows a wide range
of implementation methods to be applied and adds to efficiency.

(2) It is described in a very simple language, allowing semi-
mechanical translation to an arbitrary language (e.g., machine
language). The lexical analyzer was in fact tested by translating
it into an ALEPH program using a text editor.

(3) All parts of programs are dealt with, including format-texts.

(4) The description is hopefully more accessible and more readable
than [2].

The lexical analyzer takes as its input program texts representing
ALGOL 68 particular-programs in the standard hardware representation [1],
allowing the following deviations from [1]:

(1) Besides worthy characters all characters occurring in section
9.4.1. of [3] are allowed; for a list of all characters accepted
by the lexical analyzer see appendix l. If only worthy characters
are to be accepted, this can be achieved by adding a preprocessor
to the lexical analyzer accepting worthy characters only.

(2) Besides the three stropping regimes defined in [1], a fourth
regime is provided, the STRUP regime. In the STROP regime, tags
and bolds are represented as they are in POINT stropping, with the

AB 44p.17

addition of the following rule:

- A bold word may be written as a strop ("""), followed, in
order, by the worthy letters or digits corresponding to the
bold~faced letters or digits in the word, followed by a
strop. If the bold word is followed by a disjunctor other
than a strop, the last strop may be omitted.

(3) In the RES regime the point may be omitted from a bold word if it
is preceded by a digit from an integral-, real- or bits—denotation
(cf. [4)).

The output of the lexical analyzer consists of "tokens", which we shall
call "words" (as in [2]) to prevent confusion, since there already is an
ALGOL 68 paranotion "token". The exact definition of a "word" is given in
section 3. Roughly speaking a "word" corresponds to an ALGOL 68 denotation,
comment or NOTION-symbol. Each time the lexical analyzer is activated, it
delivers a word. By repeated activation of the lexical analyzer the program
text will be transformed into a stream of words. If the program text
corresponds to an ALGOL 68 particular program in the standard hardware
representation (augmented as above), the stream of words will correspond to
this particular program in a way more fully described in section 2. If the
program text does not satisfy the specifications of the standard hardware
representation, the lexical analyzer will generate one or more error
messages. Otherwise the program text, and consequently the stream of words,
does not correspond to an ALGOL 68 program. If the lexical analyzer is part
of a compiler, this will lead to an error message at a higher level in the
compiler.

The lexical analyzer itself consists of four separate lexical
analyzers, one for each stropping regime. The first advantage of this is an
increase of efficiency: it is no longer necessary to inspect the
environment continually during lexical analysis to determine which
stropping regime we are in. Second, if we don’t want to allow all of the
stropping regimes, we can simply omit the lexical analyzers for one or more
of the stropping regimes. In this way, we are not burdened with the details
. of stropping regimes which are not allowed anyway, as would be the case
with a lexical analyzer in which all stropping regimes are integrated. A
disadvantage seems to be the size of such a lexical analyzer when allowing
more than one stropping regime. However, since the lexical analyzers for
the different stropping regimes differ from each other at only a limited
number of places, large parts of them can be combined. This combination of
the separate lexical analyzers is not difficult and is left to the
implementer (see also note ! in section 7). The coordination of the
separate lexical analyzers during lexical analysis must be taken care of by
the global routine using them (e.g., a parser). We shall call this routine
the "supervisor".

As the lexical analyzer is composed of four lexical analyzers, one for
every stropping regime, so is in turn each lexical analyzer made up of two
analyzers: the "unit level lexical analyzer" and the "format level lexical
analyzer". The unit level lexical analyzer is designed to analyze program
text at the unit and pragmat level, assuming that the interior of pragmats
has a somewhat ALGOL 68-like structure. Comments are automatically skipped
by the unit level lexical analyzer. The format level lexical analyzer is
designed to analyze program text at the format-text level, comments also
being skipped automatically. A considerable part of the unit and format
level lexical analyzer coincides, so they can partially be combined. The
supervisor must coordinate the unit and format level lexical analyzer. We
shall often use '"the lexical analyzer" to mean one of the separate (unit or
format level) lexical analyzers.

AB 44p.18

For reasons of efficiency, the model of a finite transducer has been
chosen for the lexical analyzer, i.e., the lexical analyzer can be viewed
as a program for a finite state machine. The description of this machine is
found in section 3. The machine is completely described in ALGOL 68 by a
number of data structures and a number of operations on these data
structures, which we shall call "instructions". Moreover, a number of
predicates on these data structures is given, which we shall call
"conditions". These ''conditions" are used to enable conditional state
transitions. We point out here beforehand, that this method of description
has only been chosen for the sake of clarity and is not the best way to
implement the machine (see section 7). To describe the program which is to
run on this machine, we use a mini language called ALEX, defined in
sections 4 and 5. Programs in ALEX are closely related to right=-linear
(transduction) grammars. The entire lexical analyzer was in fact
constructed by transforming context-free grammars for the different words
into right-linear grammars and subsequently combining these into an ALEX
program. The lexical analyzer program itself is listed in section 6.

2. WORDS

A word is a value with a structure (a "mode") described by the
following ALGOL 68 declaration:

mode word = struct (int mark, string info);

The words generated by the lexical analyzer are described below. For each
value of the mark field the corresponding paranotion(s) is (are) given. For
each value of the info field the corresponding representation of the
paranotion in the reference language is given, omitting typographical
display features (the Greek letter "£'" is used to indicate a character).
Values of the mark field are indicated by names in upper case letters.
Values of the info field are indicated by strings (without embracing
quotes), "e¢" indicating the empty string.

Remarks:

(1) It is not always possible for a finite state machine to determine
whether an "=" at the end of a TAO-symbol belongs to this TAO-
symbol or not (see also {2]). In case of doubt the TAQ-symbol and
the "=" are packed together into one word with mark = SHORTOP
EQUALSETY (in contrast with the algorithm in ([2}). Words with mark
= SHORTOP EQUALSETY are the only words that may correspond to a
sequence of more than one symbols (see the second column in the
table below).

(2) For some applications the filling of the info field of some words
might have to be changed. For example, if comments should not be
discarded, the info field of a word with mark = COMMENT could be
filled with the comment text. In general, no fundamental changes
in the lexical analyzer are needed for this. In most cases the
insertion and/or deletion of a few "instructions" in the lexical
analyzer program will suffice.

(3) For the value "EOF" of the mark field no corresponding paranotion
is given since there is none. A word with mark = EOF is used to
indicate the end of the word stream.

mark

TAG
BOLD

INT
REAL
BITS
SHORTOP

SHORTOP
EQUALSETY

STRING

CHAR

BECOMES

IS

ISNOT

STICKCOLON

EQUALS
TILDE

STICK

COLON

COMMA
SEMICOLON
OPEN

CLOSE

SuB
BUS

paranotion

TAG~gymbol.

bold-TAG-symbol.
except:
bold=-comment-symbol;

~style-i-comment~symbol;

bold-pragmat-symbol;

style~-i-pragmat-symbol.

integral-denotation.
real~denotation,
bits-denotation.
DOP-BECOMESETY-symbol.
except:
equals=-symbol;
tilde-symbol.

DYAD-cum—equals-symbol;

DYAD-symbol,

is-defined-as-symbol;

DYAD-cum—equal s-cum-
becomes-symbol;

DYAD-cum—assigns-to-symbol,
is-defined~-as-symbol.

string-denotation.
character-denotation.
becomes~symbol.
is~-symbol.
is-not-symbol.

brief-else-if-symbol;
brief-ouse-symbol.
equals-symbol;
is~-defined-as-symbol.
tilde-symbol;
skip-symbol.
brief-then-symbol;
brief-else-symbol;
brief-in-symbol;
brief-out-symbol.
label=-symbol;
colon-symbol;
up-to=-symbol;
routine-symbol.
and-al so-symbol.
go-on-symbol.
brief-begin-symbol;
brief-if-symbol;
brief-case-symbol;
style-i=-sub-symbol.
brief-end-symbol;
brief-fi~-symbol;
brief-esac-symbol;
style~i-bus-symbol.
brief-sub-symbol.
brief-bus~symbol.

info

3
3

2
g€

MmO mMm MO ey

m

looogn
loo-gn

kg
[+
l"'En
1€y

Elc.dgn-

]'..En

AB 44p.19

representation

€] o-ogn
E] o.-gn

gl...gn
E] o.-én
El o-og'n
El '..En

Epeesf =

llgll...gnll

TR

~ e

AB 44p.20

AT at-symbol. € @

NIL nil-symbol. € °

DOLLAR formatter-symbol. € $

COMMENT comment. ¢ €E oo ¥
comment commentgl...gncomment
co LOEeeeg CO
i # ...gnl#

PRAGSYM bold-pragmat-symbol; pragmat pragmat

style-i-pragmat-symbol. pr pr
EOF €

The following words can be generated by the format level lexical analyzer
exclusively:

CHARROW string-denotation; Epesely "El...En"
character—denotation.
FIXNUM fixed-point-numeral. Eleeely Eleesly
ASYM letter—a-symbol. € a
BSYM letter-b-symbol. € b
CSYM letter-c-symbol. € c
DSYM letter-d=-symbol. € d
ESYM letter—e-~symbol. € e
FSYM letter-f-symbol. £ f
GSYM letter~g~symbol. € g
ISYM letter-i-gymbol. € i
KSYM letter-k-symbol. € k
LSYM letter-1-symbol. € 1
NSYM letter-n=-symbol. € n
PSYM letter-p-symbol. € P
QSYM letter-q-symbol. € q
RSYM letter-r-symbol. € r
SSYM letter-s=-symbol. € s
XSYM letter-x~symbol. € X
YSYM letter-y-symbol. € y
ZSYM letter-z-symbol. € z
POINT point-symbol. € .
PLUS plus-symbol. €
MINUS minus-symbol. > -

AB 44p.21

3. MACHINE

The lexical analyzer programs are described in a language called ALEX
(see sections 4 and 5). ALEX programs describe a series of actions of a
"machine". This machine is described below by a set of ALGOL 68
declarations. The machine consists of a number of data structures, a number
of actions on the data structures, called "instructions", and a number of
predicates on the data structures, called "conditions". The "instructions"
are used in ALEX programs to denote primitive actions of the machine. The
"conditions" are used to make decisions dependent upon the value of the
machine data structures.

1. Data structures.
struct (int state, string buffer) status;
The variable "status" represents the status of the machine.

The "state" field holds the current state of the machine.
The "buffer'" field is used to cope with lookahead. #

string input;

char head;

The variable "input" represents the input file.
The variable "head" is used to temporarily save the first character of
" input" . #

struct (int mark, string info) word;

The variable '"word" is used to pass information on the token which has
been read to the outside world. #

int match index;
bool match possible;

The variables "match index" and "match possible" are used for pattern
matching purposes inside comments, thus allowing an efficient skipping of
comments. #

2. Auxiliary definitions.
char eof = ,..;

"eof" is used as an end of file marker and must be some character that
cannot occur in the input. #

op norm = (char ch) char:
i£ Ch = IIAII then llall
elif ch = "B" then 'b"

elif ch = "Z" then "z"

AB 44p.22

else ch
£i;

We need the operator "morm" because of the fact that with a few
exceptions the two cases of a letter are equivalent. #

proc write = (string s) void: info of word +:= s;

op head = (string s) char: s[l1];

op tail = (string s) string: s[2 : upb s];
proc reserved = (string s) bool:
(s = "at" or s = "begin" or ... or s = "while");
proc comment = (string s) bool:
(s = "co" or s = "comment");
proc pragmat = (string s) bool:
(S = uprn 21'_ s = "pragmat");

3. Instructions.

proc put = void: write(norm head);
proc putitem = void: write(head);

roc save = void: buffer of status +:= norm head;
clear = void: buffer of status := "'";
roc append = void: begin write(buffer of status); clear end;

F
[}
[¢]

proc reread = void: begin buffer of status +=: input; clear end;
proc read = void: head := if input = "" then eof else head input fi;
proc next = void: input := tail input;
proc point = void: write(".");
proc zero = void: write("0");
proc quote = void: write("""");
proc strop = void: write("’"");
proc equals = void: write("=");
proc tilde = void: write("™");
roc colon = void: write(':");
proc differs = void: write("#");
proc divided = void: write("/");
proc reset = void: begin match index := 0; match possible := true end;

roc match = void:
if match possible
then if match index < upb info of word
then match index +:= 1;
match possible := norm head = info[match index]
else match possible := false
fi

;

£

proc error = (int n) void: ...;

What should be done when an error occurs is left to the implementer.
For error diagnostics, see appendix 2. #

4. Conditions.

[¢]

roc
roc
roc

proc
proc
proc

i

proc

AB 44p.23

reservedinfo = bool: reserved(info of word);
reservedbuffer = bool: reserved(buffer of status);
commentinfo = bool: comment(info of word);
commentbuffer = bool: comment(buffer of status);
pragmatinfo = bool: pragmat(info of word);
pragmatbuffer = bool: pragmat(buffer of status);
two = bool: info of word = "2";

four = bool: info of word = "4";

eight = bool: info of word = "8";

sixteen = bool: info of word = "i6";

sizeone = bool: upb info of word = 1;

sizetwo = bool: upb info of word = 2;

sizethree = bool: upb info of word = 3;

matching = bool:

(match possible and match index = upb info of word);

| AB 44p.24

4, SYNTAX OF ALEX

ALEX programs syntactically resemble right-linear grammars. The only
difference is that to every production rule a (possibly empty) "action",
and to every '"single production" rule a (possibly empty) 'condition" is
associated. If we omit the "actions" and "conditions', what remains is a
pure right-linear grammar. In the case of the lexical analyzer described
here, this grammar generates an (infinite) stream of ALGOL 68 symbols in
the standard hardware representation. The syntax of ALEX is given by a van
Wijngaarden grammar. The van Wijngaarden grammar is used here only in its
most simple form, viz. as an abbreviation mechanism for a context free
grammar. The syntax introduces a terminology, which is used in the next
section to define the semantics of ALEX,

PRODUCTIVITY::
productive;
nonproductive.
program:
transduction rule sequence.
transduction rule:
PRODUCTIVITY transduction rule.
PRODUCTIVITY transduction rule:
defined state, colon symbol, PRODUCTIVITY transduction rule body.
defined state:
state.
PRODUCTIVITY transduction rule body:
PRODUCTIVITY alternative sequence option, out alternative.
PRODUCTIVITY alternative:
PRODUCTIVITY condition, transduction, go on symbol.
productive condition:
charset.
nonproductive condition:
: sub symbol, condition, bus symbol.
transduction:
curly open symbol, action, curly close symbol, applied state.
action:
empty;
mark;
instruction list;
instruction list, and also symbol, mark.
applied state:
state.
out alternative:
transduction.

Some notions are not defined in the syntax; we define them informally
below.

state : a state of the machine.

charset : a set of characters.

condition : a predicate on the machine data structures.
instruction: an operation on the machine data structures.
mark : a value of the mark field of a word.

In addition, an ALEX program must satisfy the following conditions:

)
(2)

(3)
(4)

Remarks:

(1)

(2)

AB 44p.25

All charsets in a productive transduction rule are disjoint.

All conditions in a nonproductive transduction rule are mutually
exclusive. ‘

All defined states are different.

All applied states occur as a defined state.

A termination condition for ALEX programs could be added without
great difficulty. However, since we only use ALEX for the
description of the lexical analyzer, we shall omit this.
Termination of the constituent programs of the lexical analyzer
(see section 6) can be verified rather easily.

A transduction rule with a body consisting of an out alternative
only can be parsed as a productive as well as a nonproductive
transduction rule. Since in this case both kinds of transduction
rules are semantically equivalent, the ambiguity causes no harm.

AB 44p.26
5. SEMANTICS OF ALEX

We shall define the semantics of an ALEX program by translating it

into a pseudo ALGOL 68 procedure operating on the machine described in
section 3.

TRANSLATION OF A PROGRAM:

Let P be an ALEX program.
P="Rl ... Rn", ' :

where R1, ... , Rn are transduction rules
The translation TRANS(P) of P is defined as:

TRANS (P) = "proc p = void:

begin word := (skip, "");
goto state of status;
TRANS (R1);

TRANS (Rn);
exit:
end"

TRANSLATION OF A TRANSDUCTION RULE:

Let R be a transduction rule.

(1) R is a productive transduction rule.
R="S: Cl Tl; «o+ 3 Cn Tn; TO.",
where S is a state,

Cl, «e« , Cn are charsets,
TO, «¢s , Tn are transductions.
The translation TRANS(R) of R is defined as:
If n = 0:
TRANS (R) = "S: TRANS (T0)"
If n > 0:
TRANS(R) = "S: read;

if head in C1 then next; TRANS(T1)
elif head in C2 then next; TRANS (T2)

elif head in Cn then next; TRANS(Tn)

N.B'
The instruction '"read" does not remove a character from the string

(2)

AB 44p.27

"input" ("next" does). It merely assigns the head of "input" to

"head".

R is a nonproductive transduction rule.
R = "“S: [B1] Tl; «e. ; [Bn] Tn; TO.",
where S is a state,
Bl, s , Bn are conditions,
TO, ««« , Tn are transductions.
The translation TRANS(R) of R is defined as:

If n = 0:
TRANS(R) = "S: TRANS (TO)"
If n > O:

TRANS(R) = "S: if Bl then TRANS(T1)
elif B2 then TRANS (T2)

elif Bn: then TRANS (Tn)

TRANSLATION OF A TRANSDUCTION:

Let

D)

(2)

T be a transduction.

T ="{Il, «es 5 In} 8",
where I1, <.« , In are instructions,
S is a state.
The translation TRANS(T) of T is defined as:

TRANS(T) = "Il; seee 3 In;
" state of status := §;

goto S"

T = "{Il, oes , In, M} S",
where 11, «¢« , In are instructions,
" M is a mark,
S is a state.
The translation TRANS(T) of T is defined as:

TRANS(T) = "Il; ... ; In;
mark of word := M;
state of status := §;

goto exit"

AB 44p.28

6. PRUGRAMS

There are eight ALEX programs constituting the lexical analyzer, one
for each pair (level, regime), where level is UNIT or FORMAT and regime is
POINT, UPPER, RES or STROP. Large parts of these programs are textually
equal. Rather than listing them all in their full length, we shall combine
them in a single listing and use two variables "level" and "regime' inside
the text to indicate what part of the text belongs to what program. So the
program for level = 1 and regime = r can be constructed by simply erasing
all text with level # 1 or regime # r.

Remarks:

(1) The names of the states have been chosen so as to indicate the
string of characters that has been read so far.

(2) All charsets occurring in the transduction rules are listed in
appendix 1, except for the charset "other". The latter is not a
fixed charset but, if it occurs in a transduction rule T, it is
equal to the set of all characters (except "eof'") that are not
element of a charset of T (other than "other'").

(3) The state "STRINGESCAPE" has been provided to enable the use of
the strop character as an escape character inside character and
string denotations. 1f the strop character is to be used this way,
the transduction rule for this state must be modified.

(4) Before the first activation of a program the machine must be
initialized properly. This initialization should be dome by the
supervisor and should read:

status := (EMPTY, "");

LISTING OF THE PROGRAMS

level = UNIT

|
I
I
I
I
I
|
I
I
I
|
|
I
I
I
I
[
I
|
|
|
I
I
I
|
I
I
I
I
I
|
I
I
I
[
I
I
I
I
I
I
[
I
[
I
I
I
I
I
I
|
|
I
I
I

regime = POINT

s S — — —— —— —— — ——— — — —— — — —— ———— — {—— —— —— — — 2o S

EMPTY:

letter {put} TAG;

point {} POINT;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {)} COLON;

comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB)} EMPTY;

bus {BUS} EMPTY;

at {AT)} EMPTY;

nil {NIL} EMPTY;

dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(l)} EMPTY;
{EOF} BMPTY.

regime = UPPER

o — — — — — —— —— ——— —— — — — — ——— — o— o i St s

EMPTY:

lowerletter {put} TAG;
upperletter {put} POINTETY UPPERBOLD;
point {} POINT;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {} COLON;

comma {COMMA) EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB)} EMPTY;

bus {BUS)} EMPTY;

at {AT)} EMPTY;

nil {NIL)} EMPTY;

dollar {DOLLAR} EMPTY;

cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(l)} EMPTY;
{EOF} EMPTY.

AB 44p.29

— — — —— — — — — — — —— — — — — — — —— — ——— —— — ——— O i — —— —— — — — — — - i —— —— S— — — ——— Ay i —p S —— — — S— f— — —— ————

regime = RES

— — —— — — —— — ——— — — — — — — — — — — — t— — . . e |

EMPTY:

letter {put} TAGBOLD;
point {} POINT;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {} COLON;

comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB} EMPTY;

bus {BUS} EMPTY;

at {AT)} EMPTY;

nil {NIL} EMPTY;

dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(1)} EMPTY;
{EOF} EMPTY.

regime = STROP

—— — — — —— — — —— — ——— —— — — — — — — — —— ——— — —— — —

EMPTY:

letter {put} TAG;

point {} POINT;

strop {} STROP;

digit {put} FIX;

quote {} QUOTE STRING;
equals {} EQUALS;

tilde {} TILDE;

dyad {put} DYAD;

stick {} STICK;

colon {} COLON;

comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;

close {CLOSE} EMPTY;

sub {SUB} EMPTY;

bus {BUS} EMPTY;

at {AT)} EMPTY;

nil {NIL} EMPTY;

dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;

other {error(1)} EMPTY;
{EOF} EMPTY.

AB 44p.30

AB 44p.31

regime = POINT, STROP

TAG:
letgit {put)} TAG;
typoscore {} TAG TYPOSCORE;
{TAG} EMPTY,

|
I
I
I
|
|
| TAG TYPOSCORE:

| letgit {put} TAG;

| typo {} TAG TYPOSCORE;
| {TAG} EMPTY.

regime = UPPER

TAG:
lowerletgit {put} TAG;
underscore {} TAG UNDERSCORE;
typo {} TAG TYPO;
{TAG} BEMPTY.

|

I

|

I

|

|

I I

| TAG UNDERSCORE:

| lowerletgit {put} TAG;
| upperletter {save, error(5), TAG} POINTETY UPPERLETTER;
I typo {} TAG TYPO; :

| {TAG} EMPTY.

I

|

|

|

I

TAG TYPO:
lowerletgit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

regime = RES

TAGBOLD:
letgit {put} TAGBOLD;
underscore {} TAG UNDERSCORE;
typo {} TAGBOLD TYPO;
{} TAGBOLD END.

TAGBOLD TYPO:
[reservedinfo] {} BOLD;
{)} TAG TYPO.

TAGBOLD END:
[reservedinfo] {} BOLD;
{TAG} EMPTY.

TAG:
letgit {put} TAG;
underscore {} TAG UNDERSCORE;
typo {} TAG TYPO;

I
I
I
I
|
I
I
|
|
|
|
|
[
|
[
|
I
I
I
|
|
[
|
I
I
|
I
[
[
|
|
I
I
|
I
I
|
I
|
|
I
|
I
[
I
|
|
I
|
I
I {TAG) BEMPTY.
|

e e — —— —— — —— —— — —— —— — — — — — — — — — —

—— e e e e — T . e s ——= —— — . — — — — — — — — —— — —— —— — — — — —— " —— e, m— oo, itrs Sa . — - — — — — — — — — p—— —— — —

TAG UNDERSCORE:
letgit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG TYPO:
letter {save} TAG BOLDETY;
digit {put} TAG;
typo {} TAG TYPO;
{TAG} BMPTY.

I

I

|

|

|

I

|

I

|

|

I

| TAG BOLDETY:

| letgit {save)} TAG BOLDETY;
| underscore {append} TAG UNDERSCORE;
I typo {} TAG BOLDETY TYPO;
I {} TAG BOLDETY END.

I

I

|

I

|

I

I

|

I

I

I

TAG BOLDETY TYPO:
[reservedbuffer] {TAG} SAVEDBOLD;
{append} TAG TYPO.

TAG BOLDETY END:
[reservedbuffer] {TAG) SAVEDBOLD;
{append, TAG)} EMPTY.

SAVEDBOLD:
{append} BOLD.

Xregime = POINT, RES, STROP

|

| POINT:

| letter {put} POINT BOLD;
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

|

|

|

|

| POINT TYPO:

| digit {point, put} VAR;
| typo {} POINT TYPO;
| {error(3)} EMPTY.

I
|
I
I
|

POINT BOLD:
letgit {put} POINT BOLD;
underscore {error(6)} BOLD;
{} BOLD.

regime = UPPER

POINT:
lowerletter {put} POINT LOWERBOLD;
upperletter {put} POINTETY UPPERBOLD;
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

AB 44p.32

POINT TYPO:
digit {point, put} VAR;
typo {} POINT TYPO;
{error(3)} EMPTY.

|

|

|

|

|

| POINT LOWERBOLD:

| lowerletgit {put} POINT LOWERBOLD;
| underscore {error(6)} BOLD;
| {} BOLD,

|

I

|

|

|

POINTETY UPPERBOLD:
upperletgit {put} POINTETY UPPERBOLD;
underscore {error(6)} BOLD;
{} BOLD,

regime = STROP

STROP: ‘
letter {put} STROP BOLD;
{error(4)}) EMPTY.

I
|
|
|
|
| STROP BOLD:

| letgit {put} STROP BOLD;

| strop {} BOLD;

| underscore {error(6)} BOLD;

I {} BOLD.

regime = POINT, UPPER, RES, STROP

|

| BOLD:

| [commentinfo] {} BOLDCOMMENT ;
| [pragmatinfo] {PRAGSYM} EMPTY;
| {BOLD} EMPTY.

regime = POINT, RES, STROP

|

| FIX:

| digit {put)} FIX;

| point {} FIX POINT;

| ten {put} STAG POWER;

| letter e {save} FIX E;

| letter r {save} FIX R;

I typo {} FIX;

I {INT} EMPTY.

|

| FIX POINT:

| digit {point, put} VAR;

| letter {save, INT} POINT LEITER;
| typo {point} FIX POINT TYPO;
| {point, zero, error(8)} VAR.

AB 44p.33

— e — ——— — — — — — — — —— — — — — ———. — — — — ——— — — — ——— — — — — — — . _—— . Sor— —— ——— — —— o———. S—— S — ——

regime = UPPER

I

| FIX:

| digit {put} FIX;
[point {} FIX POINT;
| ten {put} STAG POWER;
| lowerletter e {save} FIX E;
| lowerletter r {save} FIX R;
| typo {} FIX;
I {INT} EMPTY.
|

| FIX POINT:

| digit {point, put} VAR;
l

I

I

I

lowerletter {save, INT} POINT LOWERLETTER;
upperletter {save, INT} POINTETY UPPERLETTER;

typo {point} FIX POINT TYPO;
{point, zero, error(8)} VAR.

regime = POINT, UPPER, RES, STROP

FIX POINT TYPO:
digit {put} VAR;
typo {} FIX POINT TYPO;
{zero, error(8)} VAR.

|
|
|
I
|
|
| FIX E:

| digit {append, put} FLO;

| sign {append, put} STAG POWER
| typo {append} STAG POWER;

I {INT} LEGGLE.

regime = POINT, UPPER, STROP

|

| FIX R:

I [two]l {} RADIX R(1);

| [four] {} RADIX R(2);

| [eight] {} RADIX R(3);
|
|

[sixteen] {} RADIX R(4);
{INT} LEGGLE.

regime = RE

|)

| FIX R:

I [two] {} RADIX R(1);

| [four] {)} RADIX R(2);

| [eight] {} RADIX R(3);

| [sixteen] {)} HEXBITS LEGGLE;
| {INT} LEGGLE.

SIGN;

AB 44p.34

— . S — — T — — —— — — — — — —— — —— T t— — — — — — —— — — — — —— — — —— — — —— — — —— —. Wiinn, Ao — S o iy . Wi ‘. . S Wt i,

regime = POINT, RES, STROP

|
| VAR:

| digit {put)} VAR;

| ten {put} STAG POWER;
| letter e {save} VAR E;
I typo {} VAR;

| {REAL} EMPTY.

regime = UPPER

I

| VAR:

| digit {put} VAR;

| ten {put} STAG POWER;

| lowerletter e {save} VAR E;
I typo {} VAR;

| {REAL} EMPTY.

regime = POINT, UPPER, RES, STROP

VAR E:
digit {append, put)} FLO;
sign {append, put} STAG POWER SIGN;
typo {append} STAG POWER;
{REAL} LEGGLE.

I

|

|

|

I

I

I

| STAG POWER:

| digit {put} FLO;

| sign {put} STAG POWER SIGN;
| typo {} STAG POWER;

i {zero, error(9), REAL} EMPTY.
|

| STAG POWER SIGN:

| digit {put} FLO;

| typo {} STAG POWER SIGN;

| {zero, error(9), REAL} EMPTY.
|
|
|
|
|

FLO:
digit {put} FLO;
typo {} FLO;
{REAL} EMPTY.

regime = POINT, RES, STROP

RADIX R(n): ,
radigit(n) {append, put} BITS(n);
noradletgit(n) {save, INT} LEGGLE;
typo {append} RADIX R TYPO(n);
{append, zero, error(10), BITS} EMPTY.

RADIX R TYPO(n):
radigit(n) {put} BITS(n);
typo {} RADIX R TYPO(n);

|
I
I
|
I
I
!
I
|
| {zero, error(10), BITS} EMPTY.
I

AB 44p.35

— e —— - — —— — — — T — — — — — — —— —— — — — — — —— — — — ——— —— —— — — — — p— ——— —— — S — W— — —— — —— —— —— — —

AB 44p.36

| BITS(n):

| radigit(n) {put} BITS(n);
| typo {} BITS(n);

| {BITS} EMPTY.

regime = UPPER

RADIX R(n):
lowerradigit(n) {append, put} BITS(n);
lowernoradletgit(n) {save, INT} LEGGLE;
typo {append} RADIX R TYPO(n);
{append, zero, error(10), BITS} EMPTY.

|

I

|

|

I

|

I

| RADIX R TYPO(n):

| lowerradigit(n) {put} BITS(n);
| typo {} RADIX R TYPO(n);

| {zero, error(10), BITS} EMPTY.
I

I

I

|

I

BITS(n):
lowerradigit(n) {put} BITS(n);
typo {} BITS (n);
{BITS} EMPTY.

regime = RES

HEXB ITS:
digit {put} HEXBITS;
hexletter {save} HEXBITS LEGGLE;
nohexletter {save} HEXBITS LEGGLE END;
typo {} HEXBITS;
{} HEXBITS END.

HEXB ITS END:
[sizethree] {zero, error(10), BITS} EMPTY;
{BITS} EMPTY.

HEXBITS LEGGLE:
digit {append, put} HEXBITS;
hexletter {save} HEXBITS LEGGLE;
nohexletter {save} HEXBITS LEGGLE END;
typo {append} HEXBITS;
{append} HEXBITS END.

|
|
I
I
I
|
|
!
|
|
I
|
I
|
|
I
|
|
I
| HEXBITS LEGGLE END:

| [sizetwo] {INT} LEGGLE;

I [sizethree] {zero, error(10), BITS} LEGGLE;
| {BITS} LEGGLE.

regime = POINT, UPPER, STROP

[
| LEGGLE:

I {append} TAG.

—— — — ——— — T — i —— e —— — —— — — — — — ——— — ————— — T— — ———— — ——— —— ——— — — . S P, Ot S e . S s

regime = RES
I

| LEGGLE:
| {append} TAGBOLD.

regime = POINT, RES, STROP

|
| POINT LEITER:
] {append} POINT BOLD.

regime = UPPER
|

| POINT LOWERLETTER:
I {append)} POINT LOWERBOLD.

| POINTETY UPPERLETTER:
| {append} POINTETY UPPERBOLD.

regime = POINT, UPPER, RES, STROP
|
| STRINGRETURN:
[sizeone] {CHAR} EMPTY;
{STRING} EMPTY.

EQUALS:
equals {equals, equals} DYAD EQUALS;
nomad {equals, put} DYAD NOMAD;
colon {} EQUALS COLON;
{EQUALS } EMPTY.

EQUALS COLON:

equals {equals, colon, equals, SHORTOP} EMPTY;

{EQUALS) COLON,

I

|

|

|

[

|

|

I

I

|

I

|

|

| TILDE:

| equals {tilde, equals} DYAD EQUALS;
| nomad {tilde, put} DYAD NOMAD;
| colon {tilde} DYAD NOMADETY COLON;
| {TILDE)} EMPTY.

|

| DYAD:

| equals {equals} DYAD EQUALS;

| nomad {put} DYAD NOMAD;

| colon {} DYAD NOMADETY COLON;

| {SHORTOP} EMPTY.

|
|
I
|
|
|
|
|
|
I
|

DYAD EQUALS:
equals {} DYAD NOMAD EQUALS;
colon {colon} DYAD EQUALS COLON;
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY} EMPTY.

DYAD EQUALS COLON:

equals {equals) SHORTOP EQUALSETY TYPOSETY;

{SHORTOP } EMPTY.

AB 44p.37

DYAD NOMAD:
equals {} DYAD NOMAD EQUALS;
colon {} DYAD NOMADETY COLON;
{SHORTOP} EMPTY.

DYAD NOMAD EQUALS:
colon {equals, colon, SHORTOP} EMPTY;
{SHORTOP} EQUALS.

DYAD NOMADETY COLON:
equals {colon, equals, SHORTOP} EMPTY;
{SHORTOQP} COLON.

SHORTOP EQUALSETY TYPOSETY:
equals {SHORTUP} EQUALS; ,
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY) EMPTY.

STICK:
colon {STICKCOLON)} EMPTY;
{STICK} FMPTY.

COLON:
equals {} COLON EQUALS;
differs {} COLON DIFFERS;
divided {)} COLON DIVIDED;
{COLON} EMPTY.

COLON EQUALS:
colon (IS} EMPTY;
{BECOMES } EMPTY.

COLON DIFFERS:
colon {} COLON DIFFERS COLON;
{COLON} DIFFERS.

COLON DIFFERS COLON:
equals {COLON} DIFFERS COLON EQUALS;
{ISNOT } EMPTY.

‘COLON DIVIDED:

equals {} COLON DIVIDED EQUALS;
{COLON} DIVIDED.

COLON DIVIDED EQUALS:
colon {ISNOT} EMPTY;
{COLON} DIVIDED EQUALS.

DIFFERS:
{differs} DYAD.

DIFFERS COLON EQUALS:
{differs, colon, equals, SHORTOP} EMPTY.

AB 44p.38

AB 44p.39

DIVIDED:
{divided} DYAD.

DIVIDED EQUALS:

I
|
I
|
| {divided, equals} DYAD EQUALS.

level = FORMAT

regime = POINT

EMPTY:
letter {save, reread} LETGIIS;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA)} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR)} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2))} EMPTY;
{EOF } EMPTY.

——— — — — —— — — — ———— — — —" — — —

regime = UPPER

EMPTY:
lowerletter {save, reread} LETGITS;
upperletter {save} POINTETY UPPERTAGGLE;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE)} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF } EMPTY.

——— . . E— — — — T S — — Tor— — — —— — — —— S T— _—— . E— —— — — — —— —— —— — — — ——— — — - —— ——

— e — — — s . — — —— — — — — — —— — — —— — — ——— —— — ——— — — — ——— — ——— — ———— — — — A S i —— — — —— —

regime = RES

EMPTY:
letter {save} TAGGLE;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)) EMPTY;
{EOF} EMPTY.

— —— —— —— — — — — — ——— — — — — — —

regime = STROP

EMPTY:
letter {save, reread} LETIGITS;
point {} POINT;
strop {} STROP;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR)} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF} EMPTY.

regime = RES
I
| TAGGLE:

| letgit {save} TAGGLE;
{} TAGGLE END,

I
I
| TAGGLE END:

| [commentbuffer] {append} POINTETY
| [pragmatbuffer] {append} POINTETY
I {reread} LETGITS.

COMMENT ;
PRAGMAT ;

AB 44p.40

AB 44p.41

regime = POINT, RES, STROP

|

| LETGITS:

| letter a {ASYM} LETGITS;
| letter b {BSYM} LETGITS;
| letter ¢ {CSYM} LETGITIS;
| letter d {DSYM} LETGITS;
| letter e {ESYM} LETGITS;
| letter f {FSYM} LETGITS;
| letter g {GSYM} LETGITS;
| letter i {ISYM} LETGITS;
| letter k {KSYM} LETGITS;
| letter 1 {LSYM} LETGITS;
| letter n {NSYM} LETGITS;
| letter p {PSYM} LETGITS;
| letter q {QSYM} LETGITS;
| letter r {RSYM} LETGITS;
| letter s {SSYM} LETGITS;
| letter x {XSYM} LETGITS;
| letter y {YSYM} LETGITS;
| letter z {ZSYM} LETGITS;
| hjmotuvw {error(2)} LETGITS;
| digit {put} FIX;

| {} EMPTY.

regime = UPPER

digit {put} FIX;

{} EMPTY.

I

| LETGITS:

I lowerletter a {ASYM} LETGITS;
| lowerletter b {BSYM} LETGITS;
| lowerletter c {CSYM} LETGITS;
| lowerletter d {DSYM} LETGITS;
I lowerletter e {ESYM} LETGITS;
| lowerletter f {FSYM} LETGITS;
| lowerletter g {GSYM} LETGITS;
| lowerletter i {ISYM} LETGITS;
| lowerletter k {KSYM} LETGITS;
| lowerletter 1 {LSYM} LETGITS;
| lowerletter n {NSYM} LETGITS;
| lowerletter p {PSYM} LETGITS;
| lowerletter q {QSYM} LETGITS;
| lowerletter r {RSYM} LETGITS;
| lowerletter s {SSYM} LETGITS;
| lowerletter x {XSYM} LETGITS;
| lowerletter y {YSYM} LETIGITS;
| lowerletter z {ZSYM)} LETGITS;
| lowerhjmotuvw {error(2)} LETGITS;
|

|

regime = POINT, RES, STROP

POINT:

letter {save} POINT TAGGLE;

{POINT} EMPTY.

— . . . - ——— . . Str ———— —— — — t— — — T — — —— — — — — — —— — — T— —— — — — — O s — —— o—— T— —— — O S, i, ot e, oot ot . W e . .

AB 44p .42

POINT TAGGLE:
letgit {save} POINT TAGGLE;
{} POINT TAGGLE END.

POINT TAGGLE END:
[commentbuffer) {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{reread, POINT} LETGITS.

regime = UPPER

POINT:
lowerletter {save} POINT LOWERTAGGLE;
upperletter {save} POINTETY UPPERTAGGLE;
{POINT} EMPTY.

POINT LOWERTAGGLE:
lowerletgit {save} POINT LOWERTAGGLE;
{} POINT LOWERTAGGLE END,

I

I

|

I

|

|

|

I

|

I

| POINT LOWERTAGGLE END:

| [commentbuffer] {append} POINTETY COMMENT;
| [pragmatbuffer] {append} POINTETY PRAGMAT;
| {reread, POINT} LETGITS.

l
|
l
I
I
|
I
I
l

POINTETY UPPERTAGGLE:
upperletgit {save} POINTETY UPPERTAGGLE;
{} POINTETY UPPERTAGGLE END.

POINTETY UPPERTAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{clear, error(7)} EMPTY.

regime = POINT, UPPER, RES, STROP

|

| POINTETY COMMENT:

| underscore {error(6)} BOLDCOMMENT ;
{ } BOLDCOMMENT.

underscore {error(6), PRAGSYM} EMPTY;

I

|

| POINTETY PRAGMAT:

|

I {PRAGSYM)} EMPTY.

regime = STROP

STROP:
letter {save} STROP TAGGLE;
{error(4)} EMPTY.

STROP TAGGLE:
letgit {save} STROP TAGGLE;
{} STROP TAGGLE END.

AB 44p.43

STROP TAGGLE END:
{commentbuffer] {append} STROP COMMENT;
[pragmatbuffer] {append} STROP PRAGMAT;
{reread, error(4)} LETGITS.

|

|

I

|

|

| STROP COMMENT:

| strop {} BOLDCOMMENT ;
| underscore {error(6)) BOLDCOMMENT ;
| {} BOLDCOMMENT.

I

I

I

I

|

STROP PRAGMAT:
strop {PRAGSYM} EMPTY; » .
underscore {error(6), PRAGSYM} EMPTY;
{PRAGSYM} EMPTY.

regime = POINT, UPPER, RES, STROP

F1X:
digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} LETGITS.

~digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} EMPTY.

STRINGRETURN:

[
I
[
I
I
|
I
I
|
I
[
I
I
I
I
|
I
I
I
|
|
I
I
I
I
I
I
l {CHARROW} EMPTY.

I
I
[
I
I
|
| FIX TYPO:
|
I
|
I
|
I

level = UNIT, FORMAT

regime = POINT, UPPER, RES, STROP

QUOTE STRING:
quote {} QUOTE STRING QUOTE;
strop {} QUOTE STRING STROP;
item {putitem} QUOTE STRING;
control {} QUOTE STRING;
other {error(11)) QUOTE STRING;
{error(13)} STRINGRETURN.

I

I

I

|

|

I

I

I

|

| QUOTE STRING QUOTE:
| quote {quote} QUOTE STRING;
| typo {} QUOTE STRING QUOTE TYPO;
! {} STRINGRETURN.
|

|

|

|

I

I

|

I

|

I

QUOTE STRING QUOTE TYPO:
quote {} QUOTE STRING;
typo {} QUOTE STRING QUOTE TYPO;
{} STRINGRETURN.

QUOTE STRING STROP:
strop {strop} QUOTE STRING;

I
|
I
I
I
|
|
I
|
I
|
|
|
|
I
I
|
I
|
|
I
I
I
| {} STRINGESCAPE.
I

- — ——— e — — —— R —— e — — S T o S s e ——— s — — — — — —— f— t— — —— — — — — —— . it e, S . S et e o, e . e e

AB 4bp .44

STRINGESCAPE:
{strop, error(12)} QUOTE STRING.

|
|
|
| BRIEFCOMMENT :

| cent {COMMENT} EMPTY;

| other {} BRIEFCOMMENT;

| {error(l4), COMMENT} EMPTY.
I

|

I

I

|

STYLEIICOMMENT:
cross {COMMENT } EMPTY;
other {} STYLEIICOMMENT;
{error(14), COMMENT} EMPTY.

regime = POINT

BOLDCOMMENT :
point {} BOLDCOMMENT POINT;
other {} BOLDCOMMENT ;
{error(l14), COMMENT} EMPTY.

I

|

|

I

|

I

| BOLDCOMMENT POINT: :

| letter {reset, match} BOLDCOMMENT POINT TAGGLE;
| point {} BOLDCOMMENT POINT;
| other {} BOLDCOMMENT ;

| {error(l4), COMMENT} EMPTY.
I

|

|

|

I

|

I

|

[

BOLDCOMMENT POINT TAGGLE:
letgit {match} BOLDCOMMENT POINT TAGGLE;
underscore {} BOLDCOMMENT ;

{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

regime = UPPER

BOLDCOMMENT :
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT ;
{error(i4), COMMENT} EMPTY.

BOLDCOMMENT POINT:
lowerletter {reset, match} BOLDCOMMENT POINT LOWERTAGGLE;
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT ;

|
I
!
|
I
I
I
|
|
I
|
I
I
I
| {error(l4), COMMENT} EMPTY.
I

— e — —— —— — — — —— ——— — —— — —— — —— — — — S——— S S ot . —— — —— — — — — — —— ——— o — — — O—— — — — _— — i, . S S

I
|
I
I
I
I
I
I
I
I
|
I
I
I
[
I
[
|
I
I
I
|
|
I
I
|
I

AB 44p.45

BOLDCOMMENT POINT LOWERTAGGLE:
lowerletgit {match} BOLDCOMMENT POINT LOWERTAGGLE;
underscore {} BOLDCOMMENT UNDERSCORE;
{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT POINTETY UPPERTAGGLE:
upperletgit {match} BOLDCOMMENT POINTETY UPPERTAGGLE;
underscore {} BOLDCOMMENT UNDERSCORE;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT UNDERSCORE:
upperletter {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT UNDERSCORE UPPERTAGGLE:
upperletgit {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

regime = RES

I
I
I
I
I
I
I
|
[
I
I
I
I
I
I
|
|
I
I
I

BOLDCOMMENT :
letter {reset, match} BOLDCOMMENT TAGGLE;
digiscore {} BOLDCOMMENT LETGITSCORE;
other {} BOLDCOMMENT ;
{error(14), COMMENT } EMPTY.

BOLDCOMMENT TAGGLE:
letgit {match} BOLDCOMMENT TAGGLE;
underscore {} BOLDCOMMENT LETGITSCORE;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT LETGITSCORE:
letgitscore {} BOLDCOMMENT LETGITSCORE;
other {} BOLDCOMMENT;
{error(l 4), COMMENT} EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

S — — —— —— — — — —— — — — — — ——— — — — — — — — S S Sy e, i oA e s Wi s St .

AB 44p.46

regime = STROP

BOLDCOMMENT :
point {} BOLDCOMMENT POINT;
strop {} BOLDCOMMENT STROP;
other {} BOLDCOMMENT ;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT POINT:
letter {reset, match)} BOLDCOMMENT POINT TAGGLE;
point {} BOLDCOMMENT POINT;
strop {} BOLDCOMMENT STROP;
other {} BOLDCOMMENT;
{error(l4), COMMENT} EMPTY.

|

|

|

I

|

|

|

I

I

I

|

[

|

|

| BOLDCOMMENT POINT TAGGLE:

| letgit {match} BOLDCOMMENT POINT TAGGLE;

| underscore {} BOLDCOMMENT;

I {} BOLDCOMMENT ENDTEST.

I

| BOLDCOMMENT STROP:

| letter {reset, match} BOLDCOMMENT STROP TAGGLE;
| point {} BOLDCOMMENT POINT;

| strop {} BOLDCOMMENT STROP;

I
I
|
I
|
I
I
|
I
|
I
|

other {} BOLDCOMMENT ;
{error(l4), COMMENT} EMPTY.

BOLDCOMMENT STROP TAGGLE:
letgit {match} BOLDCOMMENT STROP TAGGLE;
strop {)} BOLDCOMMENT ENDTEST;
underscore {} BOLDCOMMENT ;
{ } BOLDCOMMENT ENDTEST.

_BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

AB 44p.47

7. IMPLEMENTATION NOTES

Essentially the lexical analyzer described here is a finite state

machine.

Implementation techniques for finite state machines are well

known, so we shall not discuss them here. Nevertheless there are some

details,

largely pertaining to the method of description of the lexical

analyzer, that should get some attention. We discuss them below.

(N

(2)

3)

The lexical analyzer consists of eight separate programs, one for
each pair (level, regime). If more than one such program is’
needed, one might wish to combine coinciding parts of these
programs. An obvious way to do this, is to turn common sets of
states representing a submachine of the finite state machine into
procedures or subroutines. Such sets of states .are, for instance,
the sets of states for the reading of short operators, strings and
comments. The degree of interweaving can even be increased by
combining "similar" states, such as the "EMPTY" states, into a
single state. Pushing this interweaving too far, however, can
easily lead to a loss of efficiency, because it requires a
frequent inspection of the current regime and/or level.

The "append" instruction can be implemented by copying the
"buffer" to the "info" and subsequently clearing the buffer (as
described in section 3). However, it can be seen that if the
buffer is not empty, the only instructions executed on info and
buffer are "save", "append" and "clear". So the concatenation of
info and buffer behaves like a stack. Therefore we can implement
them as:

string infobuff;
int sep;

where
infobuff[1l : sepl

represents the info, and
infobuff[sep+l : upb infobuff]

represents the buffer. An "append" instruction now boils down to:
sep := upb infobuff;

In the description of the machine the input is represented as a
string, while in fact it most likely is a file. This can give some
problems implementing the "reread" instruction. The "reread"
instruction appends the contents of the buffer to the head of the
input and clears the buffer. This instruction is only used in the
format level programs (so if we only need the unit level programs,
the problem does not exist). It can be implemented by copying the
buffer to a special lookahead buffer and (after clearing the
buffer) start reading from this lookahead buffer instead of the
input file. It can easily be seen that as long as the lookahead
buffer is not empty, no characters are "saved", i.e. put in the
buffer. So one might be tempted not to copy the buffer at all and

AB 44p.48

use the buffer itself as the lookahead buffer. By doing so,
however, the stack behavior of the concatenation of info and
buffer will get lost, because it is possible that a "put"
instruction must be executed with a nonempty buffer (it is
possible to restore the stack behavior though, but this is rather
tricky). So if the info and buffer are concatenated as described
in (2), one should not use the buffer as the lookahead buffer.

REFERENCES

[1] HANSEN, W.J. and H. BOOM,
Report on the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 40 (1976) 24~43.

[2] BELL, R.,
A Token Recognizer for the Standard Hardware Representation of ALGOL 68,
Algol Bulletin 41 (1977) 47-70.

[3] WIJNGAARDEN, A. VAN, et al. (eds.),
Revised Report on the Algorithmic Language ALGOL 68,
Acta Informatica 5 (1975) 1-236.

(4) HANSEN, W.J.,
Trouble Spots in the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 42 (1978) 11-13, "

AB 44p.49

APPENDIX 1: CHARSETS

All worthy characters (including both upper and lower case letters)
plus all characters of the reference language (including some control
characters) may occur in the input, i.e. the following characters are
allowed:

abcdefghijklmnopgqrstuvwxysz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ
0123456789 .10" space « VA G&#<<>>]/
+Z20LT L7 +++=-=x*_ 5 ()| :[]@-3$
¢ # ° newline newpage

The charsets applied in section 6 are defined below. A set of characters is
denoted by a list of its elemehts surrounded by curly brackets, each
element separated by a blank. Furthermore we use "+" for set union and "-"
for set difference. The charset "item" is not defined; it must be equal to
the set of all characters that are allowed as a string item.

at = {@}

bus = {1}’

cent = {¢}

close = ()}

colon = {:}

comma = {,}

control = {newline newpage}

cross = {#)}

differs = {#}

digiscore = digit + underscore

digit ={01234561789})
divided = {/}

dollar = {$}

dyad =nomad + (VA &¥<>e X 0LT | T+14+4+-=}
equals = {=}

hexletter ={abcdef ABCDEF}
hjmotuvw ={hjmotuvwHJIMOTUVW)}
letgit = letter + digit
letgitscore = letgit + underscore
letter = lowerletter + upperletter
letter a = {a A}

letter b = {b B}

letter c = {c C}

letter d = {d D}

letter e = {e E}

letter f = {f F}

letter g = {g G}

letter i = {i 1}

letter k = {k K}

letter 1 = {1 L}

letter n = {n N}

letter p = {p P}

letter q = {q Q}

letter r = {r R}

letter
letter
letter
letter
lowerhjmotuvw
lowerletgit
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowerletter
lowernoradletgit(n)
lowerradigit (1)
lowerradigit(2)
lowerradigit(3)
lowerradigit(4)
minus

nil

N X ®n

N X OROTES FERKRKHD AOOD

. nohexletter

- nomad
noradletgit(n)
open

plus

point

quote
radigit (1)
radigit(2)
radigit(3)
radigit(4)
semicolon
sign

stick

strop

sub

ten

tilde

typo
typoscore
underscore
upperletgit
upperletter

AB 44p.50

{s S}

{x X}

{y Y}

{zz2}

{hjmo tuvw)
lowerletter + digit

{abcdefghijklmnopgqrstuvwxyz}

{a}

{b}

{c}

{d}

{e}

{£}

{g}

{i}

{k}

{1}

{n}

{p}

{q}

{r}

{s}

{x}

{y}>

{z}

lowerletgit - lowerradigit(n)
{0 1}
{012
{01 2
{01 2
{-}
{°}
letter - hexletter
{<>/x *}

letgit - radigit(n)
{G ‘

{+}

}

7}
789 abcdef)

w W Ww
S

56
56

= {o}

{ll})
{0 1}
{0123
{0123
{0123
.

{+ -}
{1}

{"}

{0

{10}

{"}
{space .} + control
typo + underscore
)

upperletter + digit

4567
456789 abcdefABCDETF}

{(ABCDEFGHIJKLMNOPQRSTUVWIXYZ}

APPENDIX 2: ERRUR DIAGNOSTICS

error

12

13

14

Illegal character at the unit level.
Character skipped.

Illegal character at the format level.
Character skipped.

Unidentified point.

Point skipped.

Unidentified strop.

Strop skipped.

Bold preceded by underscore.
Underscore skipped.

Bold followed by underscore.
Underscore skipped.

Illegal bold word at the format level.
Bold word skipped.

No digits in fractional part of real denotation.
Zero inserted.

No digits in exponent part of real denotation.
Zero inserted.

No radix digits in bits denotation.
Zero inserted.

Illegal string item.

Character skipped.

AB 44p.51

Strop not followed by strop in character or string denotation.

Strop inserted.

End of file in character or string denotation.
Quote inserted.

End of file in comment.

Comment symbol inserted.

AB 44p,52

AB4L. 4 4 The Use of Algol 68 Pattern Matching

to Describe a Formal Logic System

by V.J. Rayward-Smith,
School of Computing Studies and Accountancy,

University of East Anglia, Norwich, NR4 7TJ.

Abstract
Axioms of formal logic cannot be defined in a

context-free manner and thus standard parsing techniques
cannot be used in their recognition. This paper describes
how SNOBOL-1like pattern matching techniques are applied
to overcome the parsing problem in a package of routines
used in the teaching of formal arithmetic. The routines
are written in Algol 68 using pattern matching facilities

described by Housden and Kotarski (1977).

§1. Introduction

In his paper McGettrick (1976) discusses the problems of dealing
with logical expressions in a computer aided learning environment. In
this paper we describe the Logic Teaching Package (LTP), a package of
Algol 68 routines used to teach students the concepts of formal
arithmetic. LTP is designed for the use of third year undergraduates
undertaking a course in Mathematical Logic. This course uses the
well-known book by Kleene (1952) as its text and, in this paper, we
discuss how LTP covers those concepts introduced in Chapter IV of the
book.

It is not difficult to recognise strings conforming to Kleene's
definitions of vgriable, term or fbrmula. In fact, since all these
can be described in a context-free manner, standard parsing techniques
can be used. However, this is not the case for the majority of the

axioms defined by Kleene and thus such standard parsing techniques

AB 44p.53

are not generally applicable.

The problem is overcome by using SNOBOL-like character string
pattern matching techniques (Griswold, Poage and Polonsky, 1971) to
recognise the various constructs. Because of the author's personal
preference for Algol 68, LTP is written in the language and the pattern
matching faqilities used are those described in Housden and Kotarski
(1977). This album of modes, operators and procedures which provides
SNOBOL-1like pattern matching facilities for the Algol 68 programmer
has been well tested by successive classes of Computing Studies
undergraduates on a Data Structures course taught in the second year
of a B.Sc. programme at U.E.A. (Housden and Rayward-Smith, 1975).

The recognition of a correct proof in formal arithmetic
demonstrates the immense power of pattern matching techniques. There
have been some attempts to determine precisely the class of languages
recognised by restricted sets of the pattern matching facilities but
the problem remains unsolved for the general case. Fleck (1971) shows
that the context-free languages can be recognised using just the
primitive pattern null, string constants and variables together with
alternation, concatenation, unevaluated expression and assignment
operators. In later works, Fleck (1975, 1978) describes the two
classes of languages recognised by these pattern matching facilities
with the addition of (a) complementation and (b) immediate value
assignment. If both complementation and immediate assignment are
added then pattern matching can be used to recognise the extended
context-free languages as defined in Liu (1977). In this paper, we
describe the use of pattern matching to recognise a language that is
not an extended context-free language. This is achieved by the use
of deferred evaluation of pattern procedures. The theoretical
limitations of such a technique have yet to be explored fully although

a start has been made (Fleck, 1978).

AB 44p .54

§2, Variables, terms and formulae

Clearly, patterns can be defined which correspond to the
definitions of variable, term and formula found in Kleene (1952).
However, one of the niggling problems in handling logical expressions
is that of removal‘and insertion of parentheses. The conventions for
omission of parentheses are given in Kleene (1952) together with
rules for restoring an expression to its fully parenthesised form.
Rather than cope with all the problems inherent in this, LTP firstly
translates any term or formula presented to it into an equivalent

Polish form (¥ukasiewicz, 1951). For example,

both a»bvc&d
and a>((bvc)&d)

are translated into o(a)&v(b)(c)(d)

Note that during translation several checks are carried out.
Firstly, all variables are recognised; unquantified variables are
surrounded by (and) but quantified variables together with the

quantifier remain in square brackets. For example,

[dc1(c'+a=b)

is translated to [dc]=+'(c) (a) (b)

Because variables can consist of an arbitrary number of characters,
these two conventions simplify later processing. Secondly, during

the translation phase the sprurious space characters are removed since
it is assumed thét spaces are everywhere insignificant in the

student's input. Thirdly, the existence of any illegal input symbols

is reported to the student user by suitable error messages. Lastly, the
algorithm to translate an infix ekpression into its equivalent prefix

form enables any mismatching of parentheses to be reported during the

AB 44p.55

translation phase. The operators are ranked in the order o, &, v, ~,
vx, dx, =, +, *, ', where x is any variable and the tighter the
operator binds, the further to the right it appears in this list.
After completion of the translation phase, variable, term and
formula are defined using the following patterns and procedures,

the notation being that of Housden and Kotarski (1977).

string letter = "abcdefghijklmnopqrstuvwxyz', digit = '0123456789",

zero "0"; ob = "(", ¢cb = ™", os = n[n’ cs n]n;

proc max no = (pattern p) pattern: (ref pattern q = heap pattern;

q:=p + *q or null);

pattern number:= span (digit),

quantifier:= exists or forall c¢ the strings exists and forall
| represent I and V c,
connective:= and or or or imply c the strings and, or, imply
represent A, V, >,
variable := ob + break (cb) + cb,
qvariable:= os + break (cs) + cs,

term:= max no (patt prime) +
(zero or variable or (plus or dot) + *term + *term),
formula:= equals + *term + *term
or *connective + *formula + *formula
or not + *formula

or *qvariable + *formula

The operator * when applied to an object of mode ref pattern
produces a pattern which preserves the 'name" of its pattern argument
and not its value. This deferred evaluation of patterns is used both
to avoid unnecessary copying during pattern construction aﬂd also in

the construction of recursive pattern expressions. The recursive

AB 44p.56

definition in max no enables one to construct a pattern q to match
as many occurrences as possible of the pattern p in any input string.

The user of LTP is not made aware of the internal representation
but is simply provided with routiies allowing him to test whether the
strings he defines represent variables, terms or formulae and to test
his understanding of the conventions for omission of parentheses.
Routines are also provided to check the student's understanding of
scope. The scope of a binary operator is found from the internal form
by searching from the operator for the first two occurrences of
formula-patterns. Hence, in s(a)&v(b)(c)(d), the scope of & is found
to be v(b)(c)(d). If the operator is unary, the scope is simply the
first such formula-pattern discovered. Since quantified variables are
regarded as unary operators, the scope of a quantified variable can
be similarly found, enabling LTP to check whether a given occurrence
of a variable in a formula or term is bound or free.

A procedure markbound is available which marks with a dollar
sign every bound occurrence of a variable in a formula. So, if
markbound is applied to [#Z]=+'(c)(a)(b), both occurrences of c will
- be marked resulting in [dc$]=+"'(c$) (a) (b), but if markbound isb
applied to v[dc]=+'(c)(a)(b)=(c)(a), the third occurrence of c¢
will not be marked. When substituting terms for variables, it is
important to distinguish the free and bound occurrences of variables
since the substitution of a term t for a variable x in a formula A
consists of simultaneously replacing only the free occurrences of x in
A by occurrences of t. A term t is free for x in A(x) if‘no free
occurrence of x in A(x) is in the scope of a quantifier Vy or dy,
where y is a variable of t. To check for this property, we simply

mark all bound occurrences of variables in A(x) using markbound;

AB 44p.57

t is then substituted for all unmarked occurrences of x in A to
produce a new formula A(t). It t were free for x in A(x), applying

markbound to A(t) would cause no new marking.

§3. Postulates of the theory

Kleene defines the following postulates.

GROUP A. Postulates for the predicate calculus.

GROUP Al. Postulates for the propositional calculus.

la. A2 (B2>A).

, A A>B
1b. (A>B) > ((A>(B>C)) 2 (A>C)). - B.
3. A> (B>A&B). 4a. A & B © A.

4b. A & B o B.

5a. A > AV B. 6. (A>C) > ((B>C)
5b. B > AV B. ' > (AV B >C()).
7. (A >B) > ((A>-1B) > 4A). 8. 1—1A D A.

GROUP A2. (Additional) Postulates for the predicate calculus.

9. T T 10. WA(X) > A(%).
11. A(t) > IA(X). 12. A(x) > C

dxA(x) > C’
GROUP B. (Additional) Postulates for number theory.

13. A(0) & Vx(A(x) » A(x")) = A(x).

14, a' =b' > a =b. 15. =ya' = 0.

16. a=b> (a=c>b =¢). 17. a=Dbo>a' =>h'.
18. a + 0 = a. 19. a+b'=(a+b)'.
20. a.0 = 0. 21. a.b' = a.b + a.

For Postulates 1-8, A, B and C are formulae. For Postulates

9-13, x is a variable, A(x) is a formula, C is a formula which does

AB 44p.58

not contain x free and t is a term which is free for x in A(x). For
Postulates 14-21, A is a formula, a, b, ¢ and x are variables.
Postulates 2, 9 and 12 are known as rules and all the other
postulates are known as axioms.

Patterns corresponding to axioms la, 1lb, 3-8 and 14-21 are
simple to write. For example, the pattern corresponding to axiom la

is defined in the following way:
pattern axiom la = imply + *formula @ a + imply + *formula + *a

In this exgmple, the operator * is applied to the string variable, a,'
and this causes a pattern to be produced in which the reference to a
is kept. When pattern matching takes place, the operator @ ensures
that the variable a is associated with the first occurrence, of a
formula in the input string and thus *a ensures a match with an exact
repetition of the same formula.

Patterns corresponding to the remaining axiqms (10, 11 and 13)
are not so straightforward énd stress the importance of the deferred
evaluation of procedures. The difficulty with these three axioms
arises from substitution. We will illustrate how these difficulties
are solved by constructing a pattern corresponding to axiom 10, i.e.
S[W]JA(x)A(t), where t is a term free for x in A(x) and A(t) denotes
the formula achieved from A(x) by replacing every free occurrence of
X in A by t. The pattern required uses the operator * applied to. a
procedure which defers deproceduring until the routine is encountered
during pattern matching. Considerable care must be taken, when using
such deferred procedures, to ensure that any variables useéd in the
body of the procedure are in scope when the procedure is executed.
This is why procedures delivering patterns used in Housden and

Kotarski (1977) are all of mode proc pattern. Problems of handling

AB 44p.59

procedures with parameters are similar to those discussed by
Rayward-Smith (1977).

The pattern for axiom 10 is:

pattern axiom 10 = imply + os + forall + break (cs) @ x +
cs + *formula @ a + *formula @ b +

*(pattern: (pattern p; string adol:= markbound (a);

while ob + x + cb

isin adol replaceby o do skip od;

while dollar isin adol reglaceby """ do skip od;
int j,i:= index ("*", adol);

if i=0 then p:= patt a

else p:= adol [1:i-1] + term @ t;
while!
(j:= index ('™", adol [i+l:upb adol]))40

do p:= p + adol [i+l:j-1] + * ¢;

if i<upb adol then p:=p+adol[i+l:upb adol]fi
£ , -

if (pos(1) + p + rpos(0)) isin b then
if upb markbound(a)-upb a=upb markbound (b)-upb b

then null else fail

fi

else fail

£i))
Having identified the formula A(x) (called a), the variable x and
A(t) (called b), the procedure constructs a pattern which will match
any string which is equal to a except that every freée occurrence of

x is replaced consistently by a term t. It then checks that b is an

AB 44p.60

example of this pattern and that t is a term free for x in A(X).
Note that it is possible to incorporate into the pattern error messages
informing the student user of LTP why some particulgr string under
consideration might not be an example of the patterﬁ.

Rules 2, 9 and 12 require more than one input string. In a
proof, these rules are used to deduce a string from previous strings.

For example, the proof of a = a given in Kleene (1932) commences

1. a=b>(a=c>b =¢) - Axiom 16.
2. 0=0>(0=0>0=0) - Axiom la.
3. (a=bo(a=¢c>b=¢))>2((0=0>((0=0>0=0))

> (0=0>((0=0>0-=20))) - Axiom 1la.

4. (0=0>(0=0>0=0))>(a=b>(a=c>b=c)) -

Rule 2, 1, 3.

The first 3 lines of this proof can be easily checked in
isolation but the 4th. line needs reference to lines 1 and 3. Hence,
~when proof checking, every line is stored. If it is an axiom, it is
~ checked using the pattern definitions described above but if it is a
rule, the corresponding pattern definition refers to previous lines of
the proof. LTP checks any student proof and outputs suitable error

messages.

§4. Conclusion

The major criticism of LTP is the relatively large amount of
store required (~ 40 K) and although work is continuing in an effort
to reduce this, significant reductions are not anticipated. On the
credit side, however, LTP is a useful package in two respects. Firstly,
the unsophisticated user can have his understanding of predicate

calculus thoroughly checked and can receive useful output giving

AB 44p.61

guidance as to the cause of his errors. Secondly, the student
familiar with the pattern matching album can find a new insight into
the meaning of concepts such as "t is a term free for x in A(x)". By
approaching a formal logic system through patterns, many previously

difficult concepts are considerably simplified.

Acknowledgement

The author would like to thank Mrs. B. Roper and Miss P. Newby
for their programming assistance during the development of LTP.
Professor Housden gave much useful advice on the use of his.patterns

album together with continuous encouragement.

References
FLECK, A.C. (1971). Towards a theory of data structures, Journal of

Computing and System Sciences, Vol. 5, No. 5.

FLECK, A.C. (1975). Recent developments in the theory of data
structures, in Proceedings of the 4th Texas Conference on Computing

Systems, Austin, Texas.

FLECK, A.C. (1978). Formal models for string patterns, in Current
Trends in Programming Methodology, Vol. 4; Data Structuring, edited

by R. Yeh, Prentice-Hall.

GRISWOLD, R.E., POAGE, J.F. and POLONSKY, I.P. (1971). The SNOBOL 4

Programming Language, Prentice-Hall.

HOUSDEN, R.J.W. and KOTARSKI, N. (1977). Character String Pattern
Matching in Algol 68, in Proceedings of the Strathclyde Algol 68

Conference, SIGPLAN, Vol. 12, No. 6.

AB 44p.62

HOUSDEN, R.J.W. and RAYWARD-SMITH, V.J. (1975). An Information
Structures Course based on Algol 68-R presented at the Conference on
Experience with Algol 68, Liverpool University. (Copies available

from the authors).
KLEENE, S.C. (1952). Introduction to Metamathematics, North-Holland.

LIU, K.-C. (1977). An Efficient Algorithm for String Pattern Matching,

Ph.D. Thesis, Iowa..

LUKASIEWICZ, J. (1951). Aristotle's Syllogism from the Standpoint of

Modern Formal Logic, Oxford University Press.

McGETTRICK, A.D. (1976). Teaching Mathematics by Computer, The Computer

Journal, Vol. 20, No. 3.

RAYWARD-SMITH, V.J. (1977). Using Procedures in List Processing,
in Proceedings of the Strathclyde Algol 68 Conference, SIGPLAN,

Vol. 12, No. 6.

AB 44p.63

0
')

X4

oo sy T.&

FoIxFUI €

A;k.\rl L7 % VYT AM] QNOY_&

Ry U2 F? ET %y ST T3

Y 292 . 3 s U7 YR} .
25 it () _— 13 e 0 it w9 3 5
28720 T td.\u~ uw .».«.\N\Nht N, pIpurw 2 f

22 (L
A 2002897, pUIy R PIPLOY 280d, >3
Aow '\QQQ\. 2702 N pOIIUIUE BUT.
fo prnor QU Tt pAIve AUY 1] —-h

(> Ay wirpgbbinc 71 pARYI 9 (1

utfa%&ﬂ)&wsuw wtuwmwuwe
m@:w :w\Mn\w D fr1 oo v GEOITY? iuﬂ@f €,

[1 s 205 792 fo eIy} B 2
[EF LIS HETH] ﬁ%.e\
“§1} =dnf
1) - df

NQ.\NR\\-Q —~

Saavgs ‘I

g Bungrunsz fo vaswrop) L
cgruarz v day IRINYI20Y
JrampenRs 0 SR AADY? b\wﬂ&ﬁw = 5°F

£ [O\

PrIEL 24 Fuirod \QN&:N\ 01

| bt

79wo> 7 /72 (€

- - Juargu? sao04s

SUIIPIUY PP,

7557 71 (2

FI5Bds Juiiw ‘b

(X37caohyun 931WIS ROITON ‘edustdgs 203indmod jo A3inoeyg)

ATWAGHV) ‘@A ONV ATISWY ‘W'Y VAINTY VUIA AR

ggqag

