
ISSN 0084-6198

Algol Bulletin no. 4 3

DECEMBER 1978

CONTENTS

AB43.0

AB43. I
AB43. I. I

AB43.1.2
AB43.1.3
AB43.1.4
AB43.1.5

AB43.2
AB43.2.1

AB43.3
AB43.3. I
AB43.3.2

AB43.4
AB43.4.1

AB43.4.2

AB43.4.3

Editor's Notes

Announcements
A Finite State Lexlcal Analyzer for the

Standard Hardware Representation
Book Review - ALGOL 68 - A first and second course
Syntax diagrams for ALGOL 60 and SIMULA 67
Modified ALGOL 60 - Erratum
ALGOL 60 Reports

Letter to the Editor
C. J. Cheney, String escapes for ALGOL 68

Working Papers
Commentaries on the Revised Report
C. H. Lindsey and H. J. Boom, A Modules and Separate

Compilation facility for ALGOL 68

Contributed Papers
P. R. King, G. Cormack, G. Dueck, R. Jung,

G. Kusner and J. Melny~,
MABEL : A Beginner's Programming Language

M. Sintzoff, Properties, Feasibility and Usefulness
of a Language for Programming Programs

Hendrik Boom, ABSTRACTOd Thoughts

PAGE

I

2
2
3
3
3

4

6

19

54

84
91

AB 43p. I

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of
IFIP:

"The opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that might arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been
provided by Professor Dr. Ir. W. L. van der Poel, Technische Hogeschool,
Delft, The Netherlands. Mailing in N. America is handled by the AFIPS office
in New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $7 per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any currency (a list of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency is absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $3 each. However, it is
regretted that only AB32, AB34, AB35, AB38, AB39, AB41 and AB42 are
currently available. The Editor would be willing to arrange for a Xerox copy
of any individual paper to be made for anyone who undertook to pay for the
cost of Xeroxing.

AB43.0 EDITOR'S NOTES

The WG met at Jablonna, near Warsaw, at the end of August, and continued
its discussion of the "ABSTRACTO" theme. Two of the papers in this issue
(those by Sintzoff and Boom) formed part of that discussion, and I hope to
publish more of it in the next issue. The discussions will continue at the
next meeting, which is to be held somewhere in New Jersey, Just before
Easter.

Two other outcomes of that meeting were the appearance of tne Modules and
Separate Compilation proposal in its final form, and the approval of another
set of Commentaries on the Revised Report, this time tying uD most of the
loose ends in the Transput Both of these items apear in this issue (copies

AB 43p.2

of the Modules proposal can also be obtained from the Mathematisch Centrum,
Amsterdam}. The main effort now proceeding on the ALGOL 68 front is the
preparation of a Model Implementation of the Transput, which it is hoped to
publish about the middle of next year.

This issue of the ALGOL Bulletin is the thickest ever, due mainly to the
inclusion of the two documents mentioned above. As a result, there are a few
items which have had to be held over to the next issue, which should
therefore follow fairly soon.

AB43.1 Announcements

AB43.1.! ~ Finite State ~exic~ Analyzer for the Standard Hardware
Reor~ntation of ALGOL 55, ~¥ H. B. M. Jonker~

Abstract.

A finite state lexical analyzer for ALGOL 68 programs written in the
standard hardware representation is describea. The analyzer is written
in a very simple language, allowing semi-mechanical translation to an
arbitrary language. The whole language, including format-texts, is
dealt with.

This Report will be published in full in the next issue of AB. In the
meantime, it is available as Report IW 98/78 from the Mathematisch Centrum,
2e Boerhaavestraat 49, Amsterdam.

AB43.1.2 Book Review.

ALGO5 68 - ~ first and second course, by Andrew D. McGettrick

This book arose out of a course at Strathclyde University to teach ALGOL
68 over a period of 2 years. Teaching ALGOL 68 is the operative word, since
it is in no way intended to teach proramming as an art in itself - in this
it may be contrasted with that other book from Strathclyde, Programming and
Problem Solving in ALGOL 68 by A. J. T. Colin, which teaches programming and
just hapens to use ALGOL 68 as a suitable tool (see AB42.1.6).

However, it would be a brave student who succeeded in learning the
language by reading this book from cover to cover, for there is much wood to
obscure the trees. Technically, it is almost perfect. The whole language is
covered. No detail is left out. Every sentence in it is true - but at what a
price, for every sntence is prefixed by a long list of conditions which are
necessary for its truth, and postfixed with a llst of exceptions which are
to be discussed at length in some later chapter. "Pedantic", I think, is the
word for it, although the style is applied so uniformly throughout (with
nary a quotation to enliven it) that perhaps a better word would be "dour"
(which is a Scottish technical term).

However, if you know more or less what is in the language and want to
enquire about some specific detail, then you will certainly find it here
(and with an excellent index to lead you to the right spot). Suppose you
want to know all there is to know about recursive mode-declarations, say.
Fine! Turn to the part of the chapter concerned. There it will tell you how
to construct one. Then follow two pages to tell you which modes are well
formed, including all the well-known impossible examples. After that, there
is a whole page devoted to mode-eqivalence. If you have struggled through so
far (and skipped over a page on the use of flexible names, which now
intervenes), you will come at last to what you were really looking for,

AB 43P.3

namely a description of what these strange modes are meant to be used for,
the construction of lists and trees. But you then have to go to the
exercises at the end of the chapter to find any worthwhile tree examples.
The whole book is like this. Once he starts discussing some particular
topic, he proceeds to discuss the whole of it. I don't think Dr McGettrick
intended to write a work of reference, but that is what he has done. If you
are looking for a book to teach the full language, therefore, you must look
to Pagan (A Practical Guide to ALGOL 68 - see AB40.I.7) but, contrariwise,
you should not look to Pagan to solve obscure technical points.

There are exercises at the end of each chapter (with answers at the back),
but one could have wished for more extended examples in the text. An
appendix contains standard-prelude tables and the syntax chart from
AB37.4.7.

C. H. Lindsey

AB43.1.3 Syntax diagrams for ALGOL 60 and SIMULA 67

A booklet entitled "ALGOL60 / SIMULA67 Syntaxdiagramme", by H. Engelke and
B. Kalhoff (Bericht 7806, Oktober 1978), can be obtained from the Institut
fuer Informatik und Praktische Mathematik, Christian-Albrechts-Universitaet,
D-2300 Kiel I, Olshausenstrasse 40-60, W. Germany. It contains syntax
diagrams for ALGOL 60 and SIMULA 67 in a style somewhat reminiscent of those
accompanying the PASCAL report. Although the commentary (of which there is
not much) is in German, the diagrams themselves are in English.

AB43.1.4 Modified ALGOL 60 - Erratum

In paragraph 4.6.4.2 in both 'A Supplement to the ALGOL 60 Revised Report'
(The Computer Journal, Vol. 19, page 281, and also in SIGPLAN Notices , Vo].
12, Number I, January 1977 page 58), and 'Modified Report on the
Algorithmic Language ALGOL 60' ~The Computer Journal, Vol. 19, page 371):

(i) the label and colon, <GAMMA symbol>: should be lowered by one line,
to appear before .~. instead of before <THETA symbol> ;

(ii) an additional statement, and semicolon, <THETA symbol> := B; should
be inserted between S; and V := V + <THETA symbol>; .

The reasons for the above Erratum, which has been authorized by the
Working Group, are given in The Computer Journal, Vol. 21, page 282.

AB43.1.5 ALGOL 60 RePorts

The British Computer Society has recently published a booklet entitled
"ALGOL 60" which contains the Revised Report, the Supplement to the Revised
Report, the Modified Report, and Notes on the ISO Hardware Representation.
Copies of this booklet may be purchased from BCS headquarters, 13 Mansfield
Street, London WIM 0BP, U.K. at the price of 60p to BCS members and 90p to
non-members. The erratum mentioned above has been incorporated in these
texts.

AB43.2 Letter to the Editor

U N I V E R S I T Y OF C A M B R I D G E
AB43.2.1

COMPUTER LABORATORY

Heed of D~pe~rtmnt
Prof. M. V. Wilkes. F.R.S.
Director of 1he U n h m
Computing ~iee
Dr. D. F. Hartley

AB 43p.4

Corn ExchllnOe Street
Cllmbdd0e C82 3OG

Telephone (0223) 62435

Dr. C.H. Lindsey,
Ab Editor,
Department of Computer Science,
University of Manchester,
~NChESTER, M13 9PL. 1978 November 6

~ear Editor,

AB42.4.~ String escapes for Al~ol 68

I) ~ewline and newpage:

±s Professor Hansen suggesting (a) that the newline/newpage escape
characters should be mapped into some character codes, e.g. in EBCDIC
k'15' (NL) and X'0C' (FF), and that otherwise no special action be
taken, or (b) that these escape characters should cause
newline/newpage action when transput?

if the former, these characters do not necessarily produce
newline/newpage on an output device (but they can be useful in data
communication links).

If the latter, Algol 68 has been defined as having a record-oriented
transput system and therefore newline and newpage are routines rather
than characters. It is easy to map a language-based record-orlented
transput system onto an operating system's stream-oriented transput
system, if this should be necessary, but it is not so easy to map a
language-based stream-oriented transput system onto an operating
system's record-oriented transput system - for example, it would be
necessary to scan all strings on output to see if they contained any
characters requiring special action, for instance newline/newpage.

in any case, the character set may not have provision for newline or
newpage characters.

I would suggest that newline and newpage escape characters could be
used as a machine-dependent optional extension.

A further minor point, / is not an ANS1 control character but a
FORTRAn FORMAT item; the ANSi control character for newline is the
blank (space) character.

2) Space:

Is the intention of the escape '~ -> ~ (where ~ represents a space)
(a) to cause the effect of calling the space routine and thereby to
skip over the next character, or (b) to represent a blank character
(because typographical display features are not significant in a
program).

AB 43p.5

if the former, the implementation would need to test every character
in an output string to ensure that no overprinting occurred with an
escaped space - e.g.

print((newline,"abcd")); setcharnumber(standout,1);
print("XY' Z")

and there may also be problems in the provision of a suitable
character code within the character set.

if the latter, there is no advantage with that representation as the
escaped character (i.e. the blank following the apostrophe) would be
ignored as being a typographical display feature. For this reason,
ALGOL68C uses 'S to represent a blank character - however, the
ALGOL68C compiler does not ignore blanks within string and character
denotations so the ALGOL68C escape for blank is actually of no
practical use, and, because strings with non-escaped blanks are
easier to read (by humans) than those with escaped blanks, I hope
that other compilers will also treat blanks within string denotations
as being significant.

B) Character cases:

According to the AB42.4.2 proposal, the string denotation

"ALGOL6~C error message"

would yield the string

algo168c error message

wnich is a little strange. Instead, I propose (and intend to
implement in ALGOL68C) the following mechanism for providing case
changes:

'U or 'u
'L or 'i
tR or tr

force subsequent characters to upper case
force subsequent characters to lower case
subsequent characters are in the case that they
are written

Thus the denotations

"'OALGOL68C 'LERROR MESSAGE"
"'ualgo168c 'lerror message"
"'ualgo168c 'rerror message"
"ALGOL68C error message"

all produce the string

ALGOL68C error message

and the first two forms are invariant over any change of case of the
written characters. The forcing action of 'U and 'L would of course
terminate at the end of the denotation and i suggest that it should
also terminate at a string break, but 1 do not have strong feelings
on that particular point.

~ours sincerely,

C.a. Chenev

AB 43p.6

AB43.3.1
Commentaries on the Revised Report

The following commentaries are issued by the Sub-committee on ALGOL 68
Support, a standing sub-commlttee of IFIP WG 2.1. They deal with problems
which have been raised in connection with the Revised Report on the
Algorithmic Language ALGOL 68, and mostly take the form of advice to
implementers as to what action they should take in connection with those
problems. These commentaries are not to be construed as modifications to the
text of the Revised Report.

Note that commentaries are not being published on trivial misprints.
Those concerned about such misprints (and especially those preparing new
printings of the Report) should apply to the Editor of the ALGOL Bulletin
for the latest list of agreed Errata.

{{The first two commentaries below have already been published in
AB42.3.1. They are reprinted here for the sake of completeness.}}

1) Interruption of loops.

Although the semantics of 3.5.2 suggest that a count of the number of
iterations of a loop should be kept even when the for-part and the intervals
of a loop-clause are EMPTY, it is clearly unnecessary for an implementation
actually to implement the count in this case, and it would therefore be
unreasonable for an implementation to interrupt (2.1.4.3.h) the elaboration
simply because such a count had overflowed. Thus, the elaboration of WHILE
TRUE DO SKIP OD would be expected to continue beyond maxint iterations and
would not be terminated unless some other action of the operator or
operating system intervened.

On the other hand, if a for-part or a FROBYT-part is present in a
loop-clause an iteration count must be kept and will be subject to the
arithmetic limitations of the hardware. If this count should overflow,
therefore, it is reasonable for the implementation to interrupt the
elaboration under the provisions of 2.1.4.3.h. For example, in:

FOR i FROM maxint-3 TO maxint DO print(i) OD
the implementation may attempt to compute the quantity (maxint+1) (as is
indeed suggested by 3.5.2.Step 4), and it will then be quite justified in
interrupting.

2) Plus operator on strings.

The + operator for STRINGs declared in I0.2.3.10.i works with strings
whose descriptors are exactly flat (2.1.3.4.c), e.g.:

LOC [1:0] CHAR + "abe" # yields "abe" #
but has undefined semantics if a descriptor is "super flat", e.g.:

LOC [I:-I] CHAR + "abe" # should have yielded "abe" also #

This is an error in the Report, and implementations should accept a l l
such STRINGs and yield the same result as if LOC [1:O] CHAR had been
p r o v i d e d .

3) Scope o f heap v a r i a b l e s .

There i s an e r r o r i n 5 . 2 . 3 . 2 . a o f the Repor t . The i n t e n t i o n o f t h i s
s e c t i o n was to ensure t h a t the scope o f the heap shou ld be the same as t h a t
o f the o u t e r l e v e l o f the p a r t i c u l a r - p r o g r a m so t h a t , f o r example, the
f o l l o w i n g would be w e l l d e f i n e d :

AB 43p.7

BEGIN
MODE PCHAIN = STRUCT(PROC(INT)VOID p, INT i, REF PCHAIN next);
LOC REF PCHAIN pstart := NIL;
LOC INT J := O;
PROC p ffi (INT a)VOID: J +:= a;

the scope of p is determined by its use of the variable J #
. e l

p s t a r t :ffi HEAP PCHAIN := (p, 1, p s t a r t) ;

END

In fact, the first environ created during the elaboration of the
partlcular-program contains 4 other environs (including the primal one)
nested within itself {2.2.2.a and I0.1.1}. Therefore, to achieve the
intended effect, the first requirement of Case B of 5.2.3.2.a should have
been

(i) t he p r imal e n v i r o n {2.2.2.a} i s the e n v i r o n o f the env i ron o f the
environ of the environ of El {sic},

{{The following group of commentaries is concerned with the Transput
section of the Report. The items numbered 4 through 16 describe admitted
errors in the Report. Items 17 through 21 are concerned with errors in or
amplifications of the pragmatics. Items 22 through 30 contain
interpretations of doubtful points or suggestions for sub- or superlanguage
features.}}

4) Syntactic errors in the standard-prelude.

There are a few cases in the standard-prelude of syntactically incorrect
ALGOL 68 (as augmented by 10.1.3). They are as follows:

a) I0.2.3.3.n+I
"(INT r •" should have been "(~ INT r =".

b) I0.3.1.3.c0."on line end"."Example"+3
"PHOC(REF FILE file) BOOL:" should have been
"(REF FILE file) BOOL:".

c) I0.3.2.1.d+8
"fixed (SIGN" should have been "fixed (K SIGN".

d) 10.3.2.1.J+12
"L real width" should have been "L real width".

I0.3.2.1.J+23
"string to Lint" should have been "string to int".

I0.3.2.1.j+26,+28
"L max real" should have been "L max real".

e) I0.3.2.1.n+2
"'1.0' and of '1.0 +" should have been
"'L 1.0' and of 'L 1.0 ÷".

f) 10.3.3.2.a."OP I"+9
10.3.3.2.b+17
I0.3.5.2.b+13

The series commencing on these lines were intended to yield the
values (CHARs) of their conditional-clauses, whilst ensuring that
"read mood" remained set. They should therefore have been of the
form:

CHAR cc : IF ... THEN
e l l

ELSE ...
FI;

set read mood (f); cc

g) 10.3.5.1.a."edit L compl"-6
"OR NOT sign2 AND exp < 0" should have been omitted.

AB 43p.8

5) Standconv and FILE.

Although the Report defines the mode of "standconv" (I0.3.1.2.d) to be
PROC(CHANNEL)PROC(REF BOOK)CONV, and the mode FILE (I0.3.1.3.a) to be a very
specific structure (albeit with hidden field-selectors), so that the user
may in theory (but without practical use) write

standconv (standin channel) (SKIP)
and

FILE f ::
(SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP,
SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP, SKIP) ,

implementers should feel under no obligation to implement "standconv" and
FILE with these particular modes (provided, of course, that "standconv" has
one CHANNEL parameter) nor to accept phrases such as the above which rely
upon them. (See also the footnote on page 262 of the Revised Informal
Introduction.)

6) Establish.

The procedure "establish" (10.3.1.4.b) attempts to check the validity of
its parameters "p", "i" and "c". There is an error in the Report whereby,
given maxpos OF chan= (10, 50, 100), it accepts for (p, i, c) such clearly
unsuitable values as (5, 25, 200) and (5, -100, 0). In lines I0.3.1.4.b+8,+9
the operator BEYOND should have been an operator EXCEEDS, defined as

PRIO ~ EXCEEDS = 5,
OP EXCEEDS = (POS a, b) BOOL:

p OF a > p OF b OR 1 OF a > 1 OF b OR c OF a > c OF b;

7) Associate.

There is a bounds error in "associate" (I0.3.1.4.e) if the descriptor of
the formal-parameter "sss" is flat {2.1.3.4.c} {there are zero pages} or,
otherwise, if the descriptor of "sss[1]" is flat {the pages have zero
lines]. It is nevertheless intended that such values of "sss" be accepted
{the rest of the transput routines still having well-defined meanings in
such cases].

Note also that the lower bounds of all descriptors involved in "sssn are
required to be I, a fact not made clear in I0.3.1.4.ee.

8) Reset.

There should have been a "DOWN bfileprotect; UP gremlins" before the
final FI of I0.3.1.6.j. This then ensures that the semantics of "reset"
resemble closely those of "close n followed immediately by re-Uopen ". In
particular, it makes it clear that implementations may always entrust
complete lines of books to their operating systems as they are produced and
that alterations made to those lines by the operating system (e.g. padding

AB 43p. 9

with blanks to some multiple of the word length, or moving the logical end -
which might have been at the end of some line containing text - to the start
of the following line) are not in violation of the Report.

9) Whole, fixed and float.

It was intended that the procedures "whole", "fixed" and "float"
(10.3.2.11, when provided with combinations of "width", "after" and "exp"
parameters under which no number could possibly be converted (e.g. "whole(x,
+I)" and "float(x, 8, 4, 31"1 should call "undefined" before possibly
returning "errorchar"s.

There is an error in "whole" whereby "undefined" is not called in the
case of "whole(l, +I)" (nor in the case of "float(l, +7, 3, +I)"I. Line
IO.3.2.1.b+11 should have been

IF length = 0 THEN undefined; ABS width * errorchar
ELIF char in string (errorchar, LOC INT, s)

Contrariwise, "fixed(-.123, -4, 3)" does call "undefined" even though
"fixed(+.123, -4, 3)" returns, quite correctly, ".123". The test "length >
after" in I0.3.2.1.c+4 should not have depended on the sign of "x".

Likewise, "float(l\100, +6, I, +2)" calls "undefined", even though
"float(l\-4, +6, I, +2)" returns, quite correctly, "+.I\-3". If the failure
of the tests on "before" and "after" at the beginning of "float" were to
call "undefined" only on the initial call of "float", and were to return
"errorchar"s from within its recursive calls, then this example would return
"errorchar"s without calling "undefined" first. This is more reasonable, and
implementations should behave accordingly.

If "width" : O, it is intended that the shortest possible string
containing the correct result should be returned (except in "float" where
the "width" parameter should never be zero). Following this intention, if a
string of "errorchar"s is to be returned a string of length I would be
appropriate, rather than the empty string at present prescribed. The only
cases affected are those such as "fixed(x, O, -3)" and "float(x, O, -3, 3)",
both of which will have first called "undefined".

In "fixed", line I0.3.2.1.c+8, use is made of integer arithmetic in the
form of "~ 10 T length". This might overflow with large values of "y". Such
was not the intention, and real arithmetic, in the form of "~ 10.0 T
length", should have been used.

In "fixed", line I0.3.2.1.c+14, the test "y < ~ 1.0" is intended to yield
TRUE if there are no significant digits before the decimal point. Due to the
rounding in the preceding call of "subfixed" (as in "fixed(0.996, -5, 2)"1
it may yield TRUE erroneously. The test should have been

Y + k .5 * k .I T after < L 1.0

In "float", if "before" : 0 and "width" < 0 and "v" > O, "~" should be
yielded before the decimal point. There is an error whereby "0" is yielded
in this position. One possible cure is to replace the assignation commencing
in I0.3.2.1.d+7 by

s := (x < ~ 0.0 ~ "-" I: width > 0 I "+" I "~")
+ fixed (y, -(ABS width - ABS exp - 2), after)
+ "\" + whole (p, exp);

For examples of the use of these procedures see Commentary 18, and for a
discussion of accuracy and the properties of real arithmetic as used in them
see Commentary 25.

AB ~13p. 10

10) Putting of strings.

"put("")" at end of page has no effect (i.e. no event is provoked). It
should have been ensured that the current line was "good,, so that the empty
string could have been considered to have been written upon it. Therefore,
before the loop-clause on llne I0.3.3.1.a+39, "(NOT get good page (f, FALSE)
,' undefined)" should have been present, and likewise "(NOT get good page (f,
TRUE) { undefined)" before the loop-clause on line I0.3.3.2,a+77.

11) Put char.

There is an error in "put char" (I0.3.3.1.b) whereby the "char error
mended" routine called in llne 10.3.3.1.b+33 may, by performing a read
operation, set the read mood. There should therefore have been a call "set
write mood (f)" before the call "check pos (f)" in llne b+36.

12) Get next picture.

If a collection is replicated zero times, as in "$ 1 n(O) (3d, 3d) 1 $",
its pictures should not be selected {I0.3.4.1.1.gg} although the insertions
immediately preceding and following it shquld be performed. The procedure
"get next picture" (I0.3.5.b), as presently formulated, erroneously selects
the pictures of the collection once.

Also, in line I0.3.5.b+22 of "get next picture" there is a test to ensure
that "undefined" is called if the staticizing of the insertion or the
elaboration of the replicator should cause a different format to be
associated with the file (for there is no sensible continuation in such a
case). The same test should have been made again after llne I0.3.5.b+23, in
case the getting or putting of the insertion should have associated a new
format.

Likewise, to ensure uniformity of treatment of format-patterns and
collections, a similar test ought to have been made after lines I0.3.5.J+~
and I0.3.5.J+5 of "do fpattern".

13) DO fpattern.

The assignation "cp OF aleph[forp] := 0" in I0.3.5.J+12 will cause an
unintended index overflow in a subsequent call of "get next picture". It
should have been "cp OF aleph[forp] := I" {of. I0.3.5.b+9}.

1~) Pu t f .

In 10.3.5.1.a."edlt L compl"-q, the expression "t[:b] + point + t[b+2:
]" assembles an incorrect string causing, for example, "printf(($ ~d.d $,
13.2))" to print "013.2." instead of "0013.2" and "printf(($ 5d.d $, 13.2))"
to be undefined {note that "subfixed" suppresses all nonsignificant leading
zeroes}. The expression should have been "(a = 0 I t + point I t)",

15) Edit string.

The declaration "CHAR sJ = s[J]" in line I0.3.5.1.b+11 results in a
bounds error in cases such as "printf(($ 3z+n(O)d $, 0))". {"$ 3z+ $" would
also have caused the problem had it been syntactically legal. "edit string"
iS asked to edit ".000" with, effectively, the sequence of markers
"U,U,U,+". The first "u" is matched against the "+", causing "again" to be

AB 43p.11

set to TRUE and "j" to be incremented so as to point one character further
along the string than expected. This is still true when the "+" marker is
reached, hence the bounds error.} A sufficient, but not too elegant,
solution is to make that declaration

CHAR sJ = (j ! UPB s I s[j] I "0")

16) Indlt string.

In "indit string" (I0.3.5.2.b), in the case when the marker is "a" or "b"
with a replicator of value zero, as in "readf(($ n(O)a $, s))", "no sign" is
never set to TRUE, so that the example erroneously assigns "+" to "s".

A satisfactory cure would be to replace 10.3.5.2.b+21 by
s := (marker OF sf[1] = "b" OR marker OF sf[1] = "a" I "" I "+");

and to remove the declaration of "no sign" and all statements of which it is
a constituent.

Also, the flag "space found" should have been reset to FALSE after an "e"
marker or an "i" marker (lines IO.3.5.2.b."marker:"e""+2 and "marker="i""+2)
so as to prevent, for example, "readf(($ 3z-d e z-d $, x))" from erroneously
accepting "~1234\123".

17) Oversimplified pragmatics.

The Report contains examples of pragmatic remarks which, whilst they
indicate the intention of the formal definition so far as most practical
situations are concerned, nevertheless, if examined legalistically, do not
tell the exact truth. It should be emphasized that the pragmatics were never
intended to be an alternative definition of the language. However, it has
been thought useful to document some of these cases.

a) 10.3.1.3.dd.last sentence
A conversion key may also be the "standconv" of some channel, as in
make cony(standout, standconv(standin channel))

b) 10.3.3.second sentence
A PROC(REF FILE)VOID routine provided by the user may also be a

data-list element.

c) 10.3.3.2.aa,bb,cc,dd
In all of these, the phrase "the book is searched from the current

position" would be more accurate.

d) I0.3.3.2.hh
Before any characters are

necessary.
read, "newpage" will be called if

18) Examples of whole, fixed and float.

The examples of the use of "whole", "fixed" and "float" in 10.3.2.1 do
not illustrate all of the possibilities of those procedures. Here is a more
complete set of examples:

print (whole (i, -4))
which might print ". ..0", "~99", ".L999", "9399", "~-9", ".~-99",
"-999" or, if i were greater than 9999 or less than -999, ,,nlw.,,,
where ,.,, is the yield of errorchar;

print (whole (i, +4))
which might print "~+0", ".~+99", "+999", '[~.-9", ".~-99", "-999" or,

AB 43p.12

if i were greater than 999 or less than -999, ,***i.;
print (whole (i, 0))

which might print "0", "99", "999", "9999", "99999", "-9", "-99",
"-999", "-9999" or "-99999";

print (whole (2.3, 0))
which prints "2";

print (whole (2.7, 0))
which prints "3";

print (whole (i, -I))
which might print "9";

print (whole (i, +I))
which must always call undefined (then possibly returning "*"), since
there exists no value of i which could be converted in a width of +I;

print (fixed (x, -6, 3))
which might print "~0.272", ".L2.718", "27.183", "271.83" (in which one
place after the decimal point has been sacrificed in order to fit the
number in), "2718.3" (2 places sacrificed), "j.27183" (all places

"-2. 718" "-27.18" (I place sacrificed), sacrlflced), "-0.272",
"-271.8", "~-2718" or, if x were greater than 999999 or less than
-99999, "******";

print (fixed (x, +6, 3))
which might print "+0.272", "+2.718", "+27.18", "+271.8", "~+2718",
"-0,272", "-2.718", "-27.18", "-271.8" or "~-2718;

print (fixed (x, -4, 3))
which might print ".272";

print (fixed (x, +5, 3))
which might print "+.272" or "-.272";

print (fixed (x, O, 3))
which might print ".272", "2.718", "27.183", "271.828", "-.272",
"-2.718", "-27.183" or "-271.828";

print (fixed (x, n, 0))
which must always print the same as print (whole (x, n));

print (fixed (i, -6, 3))
which might print "+0.000", "99.000", "999.00", "-9.000", "-99.00" or
"-999.0";

print (fixed (x, -6, 61),
print (fixed (x, +6, 5)),
print (fixed (x, -6, -5))

all of which must always call undefined (then possibly returning
"******"), since there exists no value of x which could be so
converted or, in the last case, since the after parameter of fixed may
not be negative;

print (float (x, +9, 3, +2))
"-2.718\+0" "+2.72\+11" (in which one which might print "+2.718\-I",

place after the decimal point has been sacrificed in order to fit the
exponent in), "+2.7\+I 11" (2 places sacrificed), "+27\+I 111" (3 places
sacrificed), "+3\+11111" (4 places sacrificed) or, if ABS x were
greater than 9.5\99999, ,*********.;

print (float (x, -9, 3, -2))
"-2.718k~0", which might print ".~2.718\-I", ".L2. 718\11"

".L2.72\111", "~2.7\1111", "j27\11111", ".L3\111111" or, if ABS x were
greater than 9.5\999999, . * l l l l l l i * . .

l

pr in t (f l o a t (x, +9, 4, +2))
which might print "+.2718\+0" or "-.2718\+I";

print (float (x, +9, O, +2))
which might print "+27182\-5" or "-27182\-4";

print (float (0.0, +9, 2, +21)
which prints ~.+O.OOk+O";

print (float (x, m, n, 01)
which must always print the same as print (float (x, m, n-l, -I)) if

!

n>O, or the same as print (float (x, m, n, -I)) if n=O;
print (float (x, O, m, n)),
print (float (x, +7, 3, +2)),
print (float (x, 4, O, +2)),
print (float (x, 9, -3, 2))

all of which must always call undefined.

AB 43p.13

19) Complementarity of put and get.

Generally speaking, if a value of some mode A is successfully output
using "put" at a given position (p, I, c) in the book, it may be reinput
into a REF A name by a call of "get" at that same position. Moreover, the
current position after the "get" will be the same as it was after the
original "put".

The principal exceptions to this are listed below. It is assumed that the
same CONV is in use on both occasions and that no event routines have been
provided. It is also assumed that the error reported in Commentary 10 above
has been corrected.

a) If a string that is put includes characters in the "term" field of the
file, the relnput string will be truncated to Just before the first such
character.

b) If a string that is put does not completely fill the line, and if the
file is not compressible or another string is subsequently put on the
same line, the reinput string will extend to the end of the llne (or to
an earlier terminating character). As a special case of this, putting an
empty string will not result in reinputting an empty string unless the
llne had already overflowed (10.3.1.5), or "newline" was immediately
called (the file being compressible) or a terminating character was
immediately put.

c) If a string that is put is split over the end of a line (the default
action when no "line end" routine is provided), the reinput string will
be truncated to the line end. As a special case of this, if a non-empty
string is put when the line has overflowed, an empty string will always
be reinput.

d) If the mapping performed by the CONV is not the same in both
directions, then differences may arise. For example, it is quite possible
that "A" and "a" both map into the external character "A", which would
presumably be reinput as "A".

e) If, when putting, the current position is before the logical end of
file (which with a sequential access book can only happen if the logical
end is within the current line, but with a random access book can happen
anywhere), the characters already present between the current position
and the logical end can affect what is read back. For example, supposing
that "int width" = 6:

put (f, (newline, " 456.L"));
set char number (f, I);
put (f, 123)

will result in the printed line
" • • .+123456., "

with obvious disastrous consequences upon a subsequent "get (f, i)".

A related problem arises if there is insufficient room for an
arithmetic vaiue on the remainder of the current line. Suppose that the
iength of a iine is 10 characters, that "int width" = 6 as before, and
that "reai width + exp width + 4" > 6:

AB 43p.14

put (f, (newline, "...", 123456));
set char number (f, 4);
put (f, 2.718281828)

The 2.71828, in some form such as +2•718281828~+0, will be put on the
next line so that a subsequent "get (f, x)", at the position of the
original "put" will obtain the real number 123456.0

20) Putting of numbers.

In the pragmatic remarks lO.3.3.l.aa, bb, cc, after "the current line",
it would be helpful to insert "(or one less than this when at the start of
the llne)".

21) General patterns.

The pragmatic remark I0.3.4•10.I.bb is incomplete. It was intended to
read:

bb) A value ..• whose pattern Q ..•:
• P is staticized;
• the insertion of Q is performed;
• (any parameters ..•) ... using get;
• the insertion of P is performed.}

22) CONVs•

The CONV feature of the transput is one of the less satisfactory features
of the Report• It does not interface well with conversion features that are
likely to be provided by the hardware or operating system (which would be
better invoked by JCL commands or features in "idf" strings, anyway)• Its
correct implementation is difficult to do efficiently.

Noting that the Report nowhere obliges an implementer to provide any
CONVs beyond one "standconv" for each CHANNEL (and these are likely to be
null operations, or at least very straightforward, in most systems), we wish
to recommend that implementers should not in general provide additional
CONVs unless they have pressing problems with their local character codes.

In any event, if any additional CONY is provided, at least the digits and
the other characters required for the transput of arithmetic and BITS values
should always be convertible.

23) Physical file end.

When (on output) the physical end of the book is reached, the event
routine corresponding to "on physical file end" is supposed to be called as
soon as the user attempts to put any character on the line (Just beyond the
physical end) that isn't there. If the physical limits of the book are known
to the run-tlme system in advance (e.g. they are simply the Hp. "I" and "c"
parameters of "establish"), this raises no problem. In practice, however,
the limit usually becomes known only when the operating system refuses to
accept the contents of the buffer, which will not occur until, having put
characters on the line with apparent success, the user calls, for example,
"newline".

Although this situation is not recognised by the Report, it is
nevertheless recommended that the physical-file-end event routine should
thereupon be called. In terms of the transput model of the Report, it should

AB 43p.15

be as if some system-task had suddenly reduced the size of the text of the
book Just as the body of "newline" (or "newpage") was entered, causing
"physical file ended (file)" {I0.3.1.5.h} to return TRUE.

Users should be warned that any characters written to the buffer up to
that point may have been lost. They can test whether this has happened by
seeing whether "char number (file)" {I0.3.1.5.a} returns an integer greater
than I (note that in all present circumstances where the physical-file-end
event is called the char number will be found to be 1, indicating an empty
line).

24) Reldf.

The procedure "reidf" can only be called when the book to be renamed has
already been opened via some file. However, not all operating systems are
able to perform their renaming function on an opened book. For implementers
faced with such systems, one of the following courses of action is
recommended:

a) Do not provide the "reidf" facility at all (the Report nowhere requires
that "reidf possible" should ever return TRUE);

b) "reidf" causes no immediate action, but the revised "idf" is remembered
and the book is renamed when the file is eventually "close"d (or
"lock"ed).

It is to be noted that, where "reidf" is provided, the set of strings
acceptable as its "idf" parameter may be only a subset of the "idf"s
acceptable to "open" and/or "establish", especially if the latter are
permitted to contain information concerning +the disposal of, or the access
rights to, the book.

25) Lint width, etc.

The environment enquiries "Lint width", "L real width" and "L exp width"
(I0.3.2.1.m, n, o) are primarily provided in order to fix the numbers of
digits to be allowed for when numbers are output with "put". In the case of
REAL (and hence also COMPL) numbers, a sensible choice of "L real width"
will depend upon how accurately the implementation actually performs its
conversions in "put". "L exp width" should reflect the manner in which "L
max real" is actually converted.

A numerical analyst would expect, in an ideal world, that conversions
would produce sufficient digits to ensure that different real numbers are
always converted to different strings. In actual implementations this may
not be practicable. In any case the value of "L real width" should reflect
what is actually done in "put".

The Report does not seek to define the accuracy of the conversions
performed by "fixed" and "float" (I0.3.2.1.c, d) (and hence by "put" and
"putf") and by "string to L real" (I0.3.2.1.j). Here, as elsewhere where
operations are performed upon real numbers {2.1.3.1.e}, implementations
should adhere to the best practices of numerical analysis. It is best,
therefore, not to regard the texts of these procedures as defining the
strings or values which would have been obtained had the real-number
operations therein actually been performed according to the limitations of
the particular implementation, but rather to consider the strings or values
which would have resulted if real numbers and operations in the sense of

mathematics had been used, and then to consider how close to these ideal
results it is reasonable for the implementation to get. In particular, no

AB 43p.16

question of arithmetic overflow should arise (so that it is defined that all
values up to and including "L max real" may be converted).

Although, with this interpretation, the precise definitions of these
environment enquiries become of less importance, it should be noted that
there are some specific errors in "Lint width" and "L real width":

a) In the present definition of "Lint width", "maxint = 100" implies "int
width = 2". Also, real arithmetic is used which is undesirable where an
exact result should be obtained. Line 10.3.2.1.m+4 should therefore have
been

WHILE ~ 10 T (c-I) ~ L max int % k 10 DO c +:= I OD

b) The comment in I0.3.2.1.n should have been:
"... different strings are produced by conversion of 'x * k 1.0' and

of 'x * (L 1.0 + L small real)', for all admissible, non-zero x, ...".

26) INTYPE.

Due to an oversight in the definition of INTYPE (I0.3.2.2.d), it is not
possible to write

LOC STRUCT (BOOL b, STRING s) x; read (x)
although the given straightening algorithm handles this case correctly (as
will all likely implementations); moreover, "print (x)" is allowed.

Implementers are therefore recommended to allow, in addition to the
'MOOD's from which INTYPE is presently united, modes which (whilst still
subject to the other restrictions given) contain 'flexible row of character'
{but not other 'flexible' modes}.

27) Default action of event routines.

It is generally the case that, in each situation where an event routine
is called, a default action is provided (possibly a call of "undefined") and
is taken if the routine returns FALSE (even if it has actually mended the
situation). There are, however, three exceptions to this, brought about when
the position is not "good" {I0.3.1.6.dd}: viz. when a st~'ing is being input
with "get", or any value is being input with "getf", or any value is being
output with "putf". In these cases, the default action (to terminate the
input in the first case, and to call "undefined" in the others) is only
taken if the position remains "bad", and the value returned by the event
routine makes no difference, except insofar as it may prevent any further
attempts to fix the situation (see "check pos" {I0.3.3.2.c}).

To obtain a more consistent treatment of event routines, implementers are
recommended always to take the default action when an event routine returns
FALSE. This means that in "get", lines IO.3.3.2.a."(REF STRING ss)"÷2:+3 are
to be interpreted as if they had been written:

WHILE
IF NOT check pos (f)

In "edit string", llne 10.3.5.1.b÷3 is to be interpreted as if it had been
(NOT supp I (check pos (f) I put char (f, c) I undefined));

with similar changes to be made in I0.3.3.1.c-4 ("put char"), I0.3.5.g÷I0
("put insertion") and I0.3.5.i÷14 ("alignment"), and in "indlt string", llne
]0.3.5.2.b."OP I"+4 is to be interpreted as if it had been

IF CHAR k; (check pos (f) I get char (f, k) I undefined);
with similar changes to be made in I0.3.5.h+11 ("get insertion") and
I0.3.5.i÷I0 ("alignment").

To aocomodate all these changes, "check pos" (10.3.3.2.o) has to be

rewritten as follows:
PROC I check pos = (REF FILE f) BOOL:

BEGIN
BOOL reading = r e a d mood OF f,
BOOL e n d e d := TRUE;
WHILE IF get good page (f, reading)

THEN (line ended (f) t (line mended OF f)(f)
I ended := FALSE)

ELSE FALSE
FI

s e t mood (f , r e a d i n g) ;
NOT ended

END ;

AB 43p.17

28) Last insertion of a collection.

Normally, when a picture is encountered during formatted transput, it is
"staticized", i.e. its dynamic replicators are all elaborated (cQllaterally)
before transput using that picture commences. Moreover, if the transput is
terminated by a jump at this stage, any subsequent transput will start with
the next following picture. Clearly, it is not appropriate to staticize the
whole of a collection-list at one time, and it is therefore prescribed that
its pictures be staticized one by one as they are required for transput.
Finally, at the end of the collection-list, there may be a final insertion
to be performed when the collection-llst has been repeated as required by
its replicator. The Report defines that the replicator of this final
insertion be elaborated collaterally with the staticizing of the last
picture on its last time round; i.e. before any possible side effects of the
transpu t using that picture.

This is not what a user might expect nor is it easy to implement, and
implementers should therefore feel free to elaborate it after the transput
of the final picture (but before returning from "putf" or "getf", of
course). If the transput should terminate at this point, the collectlon-list
should be deemed to have been completed and future transput should start
with the next complete picture or collection-list.

The final insertion of a format-patern should be treated similarly.

29) G patterns.

In formatted output a g-pattern can be used to obtain the effect of "put"
and, if it is provided with parameters, of "whole", "fixed" and "float"
also. Thus "printf (($g(6,3), x))" is exactly equivalent to "print (fixed
(x, 6, 3))". On input, a g-pattern can give the effect of "get" but, since
"whole", "fixed" and "float" cannot be used with "get", there is no meaning
for any parameters, and none should therefore be present.

In fact, the Report gives an entirely false impression of input/output
compatibility by permitting parametrized g-patterns on input, but directing
that their parameters be ignored. It would therefore be better to regard
such parametrized g-patterns on input as not being ,'input compatible"
{I0.3.4.1.1.ii} with their data-list values and to call the "on value error"
event (with default action "undefined" if it returned /AiD_a) whenever one
was encountered.

30) Binary transput.

An implementer of the binary transput defined by the Report is not, in

AB ~3p.18

general, able to output stored values in the form in which they are stored
internally (which may include packing, storing of fields in different orders
and inclusion of extra fields such as garbage-collector templates). This is
because of the requirement to be able subsequently to relnput their
component fields or elements either singly, or stowed in other ways. For
example, the following is well defined:

putbin (standback,
(STRUCT (REAL a, [] BOOL b) (2.0, (TRUE, TRUE, TRUE)),
STRUCT (CHAR c, INT d) ("c", I)));

reset(standback);
getbin(standback,

(LOC STRUCT (REAL a, BOOL bl),
LOC STRUCT ([1:2] BOOL b2, CHAR c),
LOC INT))

There exists a sublanguage in which output values of some mode may only
be reinput into variables of that same mode. Clearly, this sublanguage is
easier (and more efficient) to implement, whilst detracting little from the
power of the language (and even increasing its safety), and it is therefore
commended to implementers.

The sublanguage is defined by the following modified forms of the
procedures in 10.3.6:

PROC ~ to bin = (REF FILE f, (YdTTYPE x) [] CHAR:
C present text C ;

PROC ~ from bin = (REF FILE f, OUTTYPE y, [] CHAR c) OUTTYPE:
C present text C ;

PROC put bin = (REF FILE f, [] OUTTYPE ot) VOID:
IF opened OF f THEN

set bin mood (f); set write mood (f);
FOR k TO UPB ot
DO [] CHAR bin = to bin (f, ot[k]);

FOR i TO UPB bin
DO

OD
OD

ELSE undefined
FI ;

PROC get bin = (REF FILE f, [] INTYPE it) VOID:
IF opened OF f THEN

set bin mood (f); set read mood (f);
FOR k TO UPB it
DO

OUTTYPE y = C the value referred to by the yield of ot[k] C;
[I:UPB (to bin (f, y))] CHAR bin;
FOR i TO UPB bin
DO

oe •

OD;
C the name yielded by ot[k] C := from bin (f, y, bin)

OD
ELSE undefined
FI ;

AB 43p.19

AB43.3.2
A Modules and Separate Compilation Facility for ALGOL 68.

By C. H. Lindsey (University of Manchester)

and H. J. Boom (Mathematisch Centrum, Amsterdam)

The following specification has been released by the IFIP Working
Group 2.1 Standing Subcommittee on ALGOL 68 Support, with the
authorization of the Working Group.

This proposal has been scrutinized to ensure that
a) it is strictly upwards-compatible with ALGOL 68,
b) it is consistent with the philosophy and orthogonal framework
of that language, and
c) it fills a clearly discernible gap in the expressive power of
that language.

In releasing this extension, the intention is to encourage
implementers experimenting with features similar to those
described below to use the formulation here given, so as to avoid
proliferation of dialects.

Acknowledgements

These proposals, which have been discussed over a long period of time by
the ALGOL 68 Support Sub-committee, owe their origin to the proposals of
Schuman [I] and of the Cambridge compiler team [22. They have been
discussed extensively at meetings of the Sub-committee and in
correspondence between members of its Task Force on Modules and Separate
Compilation. The authors of the present work wish to record their thanks
to all those who have contributed in this way, and especially to Dr R. B.
K. Dewar of the Courant Institute and Dr A. D. Birrell of Cambridge
University.
[I] Schuman, S. A., "Towards Modular Programming in High-Level Languages",
ALGOL Bulletin No. 37, July 1974, AB37.4.1.
[2] Bourne, S. R., Birrell, A. D. and Walker, I., ALGOL 68C Reference
Manual, 1975.

This document is in three sections:
I. Informal Description of Modules and Separate Compilation, by C. H.

Lindsey.
2. Formal Deescription of Modules and Separate Complation, by C. H.

Lindsey.
3. Implementation Methods for Modules and Separate Compilation, by H.

J. Boom.

AB 43p. 20

Informal description of Modules and Separate ComPilation.

I Separate compilation and protection.

These are two distinct concepts which must nevertheless be considered
together in order to make a viable system. "Protection" implies a mechanism,
better than classical block structure, for preventing indicators defined in
one place from being applied in other places where they shouldn't. "Separate
compilation" is a compile-time activity, designed to split large programs
into manageable chunks and to provide a library mechanism. The features are
independent in that the user should not be forced to use the one in order to
gain the benefits of the other. On the other hand, the unit whose contents
are to be protected will frequently be also a convenient unit for separate
compilation, and therefore the use of the two features together should be as
comfortable as possible. This proposal does not attempt to provide an
"Abstract data type" facility. The proposed protection and separate
compilation mechanisms are orthogonal to the existing ALGOL 68 "concrete"
data types.

2 Definition modules.

A definition module can be declared anywhere (but typically in the outer
reach, and often compiled separately):

MODULE F : DEF LOC STRING s; read(s);
PUB LOC FILE f; open(f, s, standin channel)

POSTLUDE
close(f); print(("file ", s, " closed"))

FED;

and it can be accessed anywhere within its reach

LOC STRING message;
ACCESS F (LOC STRING t; get(f, t); message := t[2:])

(controlled clause)
(access-clause)

The effect is to elaborate the body of the definition module, inserting the
controlled clause just before the POSTLUDE. From within the controlled
clause (which is, in general, an ENCLOSED-clause), the identification
mechanism first searches the declarations within itself, then those declared
PUBlicly in the module (i.e. 'f', but not 's'), and then those in the reach
outside the access-clause. An access-clause can return a value, coercions
being passed inside it as with other ENCLOSED-clauses:

LOC STRING message :=
ACCESS F

(LOC STRING t; PROC prs = REF STRING: (get(f, t); t); prs)

Observe the difference between

ACCESS A,B (...) and ACCESS A ACCESS B (...)

both of which are legal. Of course, the second creates one more scope level
than the first, but there could also be a difference of meaning if A
happened to PUBlicize another definition module B. Moreover, if both A and B
happened to PUBlicize the same identifier, the compiler would report an
error in the first case, but not in the second. The first form is therefore

AB 43p.21

to be preferred, especially when A and B are
which know nothing of each other's existence
PUBlications may be unknown to the user.

separately compiled modules
and whose complete list of

Definition modules are particularly intended for providing packages whose
inner workings can be concealed from their users. It is cutomary at this
stage to exhibit a module for implementing a stack:

MODULE STACK :
DEF

INT stacksize : 100;
LOC [1:stacksize] INT st;
LOC INT stptr := O;
PUB PROC

push = (INT n)INT:
((stptr+::1)<=stacksize ~ st[stptr] := n

I , print("stack overflow"); stop) ,
pop = INT:

(stptr>O ~ st[(stptr-:=1)+1]
' print("stack underflow"); stop) I

POSTLUDE
(stptr/=O I print("stack not emptied"); stop)

FED;

Now this module may be accessed

ACCESS STACK (push(1); push(2); print(push(pop)); pop; pop)

Note that ACCESS is to be regarded primarily as a mechanism for permitting
PUBlicized indicators to be made visible:

ACCESS STACK
(push(1); push(2);

(PROC push = C something else C, pop = C something else C;
push; pop;
ACCESS STACK (print(push(pop)) # prints 2 #)
); pop; pop

)

When ACCESS STACK is encountered at the outer level, it is "invoked", i.e.
its body is elaborated up to its POSTLUDE and side effects (in this case the
allocation of space for 'st') may occur. The ACCESS STACK at the inner level
can see the outer one, there is no fresh invocation and the same STACK is
accessed. The postlude is not elaborated until the outer ACCESS is finally
completed.

Although it can be contrived that two invocations of a module coexist,
this is to be regarded as a most unusual situation. Please do not confuse
modules with SIMULA classes. If you want to have more than one stack
available there is a proper way to go about it.

MODULE STACKS =
DEF

INT stacksize = 100;
MODE S = STRUCT ([1:stacksize] INT st, INT stptr);
PUB MODE STACK = REF S;
PUB PROC

newstack = STACK:
(HEAP S s; stptr OF s := O; s) ,

push = (STACK s, INT n)INT:
(REF INT sp = stptr OF s;
((sp+::1)<:stacksize I (st OF s)[sp] :: n

FED;

, I print("stack overflow"); stop)) ,
pop = (STACK s)INT:

(REF INT sp = stptr OF s;
(sp>O ~ (st OF s)[(sp-::1)+1]

I print("stack underflow"); stop))

AB 43p.22

Observe that the postlude is not appropriate in this version, and it has
therefore been left out. The user may declare STACK variables for himself
but, if he is honest, he will pretend he does not know about the STRUCT with
which STACKs are implemented. However, there are no secret modes in ALGOL
68, so a malicious user cannot be prevented from writing duplicate declarers
and making his own STACKs. Observe that this particular STACKS module
reserves no storage space - and indeed its invocation has no side effects
whatsoever.

Invocations are thus shared whenever it can be detected statically that
this is possible. Modules may access other modules, but it is still possible
to avoid all unnecessary invocations at compile time.

MODULE A : DEF ... FED,
B : DEF ... FED,
C = ACCESS A,B DEF ... FED;

the PUBlicized declarations of A and B are visible inside C,
but are not available to a user of C unless he specifically
asks for them #

ACCESS B,C (...)

Here (assuming nothing is invoked to start with) B is invoked first. The.
attempt to access C finds that A and B are needed and it therefore invokes A
(the first of them). It then finds that B is already invoked, so just makes
the existing invocation accessible inside C. After that, C itself can be
invoked and finally the invocations of B and C (but not A) are made
available to the inside of the controlled clause. When this has been
elaborated, the modules are revoked (i.e. their postludes, if any, are
elaborated) in the inverse order of their invocation.

Had it been required that the PUBlicized declarations of B should
be visible to accessors of C, then C could have been declared

MODULE C : ACCESS A, PUB B DEF ... FED

whereupon the access-clause ACCESS C (...) would have had the same effect
as ACCESS B,C (...) previously (except that the order of invocation would
then have been A, B, C instead of B, A, C).

Here is a carefully chosen confusing example to show exactly what
happens:

MODULE A = DEF PUB LOC INT i := 0 FED;
MODULE B = ACCESS A DEF i+:=I; ACCESS A (i+:=I) FED;
PROC c = VOID: ACCESS A (i+:=I; ACCESS B (print(i)));
ACCESS A (i+:=I; c)

We have, at various times, considered schemes which would have made this
example print I, 2, 3 or 4, but in the version now defined it prints 3. To
see why this is so, consider first those access-clauses which will not
invoke A afresh because they can identify (as shown by the dotted lines) an
existing invocation. This leaves two other access-clauses (one of them in
the body of the procedure) which are bound to create new invocations of A
whenever they are elaborated. Next consider the identification of the
applications of 'i'. Clearly, they all identify the 'LOC INT i' in A, but

AB 43p.23

they do so indirectly via particular invocations of A, as shown by the thick
lines.

MODULE A : DEF PUB LOC INT i :: O FED;
MODULE B : ACCESS A # whether this invokes a fresh A depends

I upon where B is accessed #
DEF i+:: I; ACCESS A (i+::I) FED;

I I t ,I

PROC c : VOID: ACCESS A # always a fresh A #
T (i+::I;~ ACCESS iB # this B does not invoke

l a fresh A #
.......... (prlnt(i)));
t j

ACCESS A # always a fresh A #
(i+::I; c)

By the time the call of 'c' is reached, A will have been invoked and the
variable 'i' generated thereby will have been incremented to +I. However,
the call of 'c' invokes another A and generates another variable 'i' which
soon gets incremented to +I. The ACCESS B invokes B, but it does not invoke
a fresh A, and therefore both the 'i's in B identify the same (i.e. the
second) 'i', which therefore gets incremented twice more. Finally, the 'i'
in 'print(i)' identifies the second 'i' (whose value is now +3) as shown (B
is not involved, as it only accesses A privately).

Here is a final example to show how a well known dangerous example can be
made safe:

BEGIN
C same as Report 11.12 up to and including MODE PAGE C;
MODULE BUFFERS =
DEF [I : nmb magazine slots] REF PAGE mag;

INT in := I, ex := I;
SEMA full slots = LEVEL O, free slots = LEVEL nmb magazine slots,

in buffer busy = LEVEL I, out buffer busy = LEVEL I;
PUB MODULE

CRITICALIN =
DEF PUB REF [] REF PAGE magazine = mag,

PUB REF INT index = in;
DOWN free slots; DOWN in buffer busy

POSTLUDE
UP full slots; UP in buffer busy

FED,
CRITICALOUT = C similarly C

FED;
ACCESS BUFFERS

BEGIN
PROC par call = C as Report C;
PROC producer = (INT i) VOID:

DO HEAP PAGE page;
get (infile[i], page);
ACCESS CRITICALIN

(magazine[index] := page;
index MODAB nmb magazine slots PLUSAB I)

OD;
PROC consumer = C similarly C;
PAR (C as in Report C)
END

END

AB 43p.24

3 Libraries.

Library procedures should be grouped together into sensible packages.
Thus the library-prelude might contain:

MODULE MATMODE : DEF PUB MODE MAT :
C the standard mode for matrices C

FED;
MODULE MATRICES = ACCESS PUB MATMODE

DEF
C declares a collection of PUBlicly known
procedures for matrix handling, which possibly use
some secret inner procedures and secret global
variables, hereby initialized C

FED;
MODULE VIBRATIONS = ACCESS MATRICES, PUB MATMODE

DEF
C declares a collection of PUBlicly known
procedures for analysing the oscillations of
structures, which use (but do not PUBlicize) the
matrix handling procedures PUBlicized by MATRICES
C

FED;
MODULE STRESSES : ACCESS MATRICES, PUB MATMODE

DEF
C declares a collection of procedures for
analysing stresses C

FED;

These four module-declarations would be compiled into the library
independently of one another except that, presumably, MATMODE had to be
compiled first and MATRICES had to be compiled (or at least have its PUBlic
interface compiled) before the remaining two. Observe that accessors of any
of them automatically get to see the mode MAT, but users of VIBRATIONS and
STRESSES do not thereby get to see MATRICES.

A particular-program can now invoke one, any two or three, or all of
them:

ACCESS VIBRATIONS, STRESSES
BEGIN

• e. e

ACCESS MATRICES
IF ... THEN ... FI;

. . . e

END

The closed-clause here appears to be being elaborated inside two modules.
Actually, it is being elaborated inside four. What happens is that the
system first tries to invoke VIBRATIONS. It finds that, for VIBRATIONS,
MATRICES is required and it can see (at compile time) that no invocation of
MATRICES exists in the static environment. It therefore invokes MATRICES
(which thereby invokes MATMODE by the same mechanism) and after that it
invokes VIBRATIONS. It now tries to invoke STRESSES, which ~iso requires
MATRICES (and MATMODE), but now it knows that invocations of these already
exist, so it can invoke STRESSES immediately. Inside the BEGIN ... END, the
PUBlicized declarations of MATMODE, VIBRATIONS and STRESSES (but not those
of MATRICES) are available.

When ACCESS MATRICES is encountered, it again knows at compile time that
MATRICES is already invoked. The only action required, therefore, is to
PUBlicize the declarations of MATRICES within the IF ... FI. Note that this

AB 43p.25

example also illustrates how a particular-program may begin with an ACCESS
(an access-clause is an ENCLOSED-clause).

4 Separate compilation using definition modules.

The following example shows how a compiler, in which the first pass has

.several phases, would be compiled in several packets. The last packet is a
particular-program - the rest are module-declarations which are to be
gathered into a "user-prelude", which is in effect a private library. Each
packet contains an ACCESS, followed by a list of module-calls. It may be
useful to regard the standard-prelude (including the particular-prelude) as
another module, and to imagine that each of these lists implicitly commences
"ACCESS STANDARDPRELUDE".

MODULE COMMUNICATIONAREA :
DEF ... FED

MODULE PASSI =
ACCESS COMMUNICATIONAREA
DEF ... FED

MODULE PHASEIA =
ACCESS PASSI
DEF

PUB PROC phasela = ... ;

FED

MODULE PHASEIB :

ACCESS PASSI
DEF

PUB PROC phaselb = ... ;

FED

MODULE PASS2 :

ACCESS COMMUNICATIONAREA
DEF

PUB PROC pass2 = ... ;
I o .

FED

ACCESS COMMUNICATIONAREA

BEGIN
ACCESS PASSI

BEGIN
ACCESS PHASEIA BEGIN ... phasela ... END;
i o .

ACCESS PHASEIB BEGIN ... phaselb ... END;
o e .

END;
ACCESS PASS2

BEGIN pass2 END
END

AB 43P.26

5 Separate compilation using holes.

The system described above essentially permits the building of programs
in a bottom-up manner. However, strong opinions have been expressed that
top-down building should also be provided. We found it necessary to propose
a completely separate mechanism - the hole - for this, since all attempts to
make the gap between the prelude and postlude of a definition module do this
job proved fruitless.

BEGIN
C interesting declarations C;
. c o

IF ...
THEN C more interesting declarations C;

NEST "a" # this construct is a formal-hole #
ELSE C yet more declarations C;

NEST "b"
FI;

. B e

END

EGG "a" :
(C some serial-clause. All the declarations preserved in
at "a" are available here C)
this construct is an actual-hole #

the nest

EGG "b" :
(..................)

The three packets shown would be compiled in the given order. Clearly,
the semantics simply state that the meaning of the collection of packets is
the same as that of the particular-program obtained by removing the
formal-holes and stuffing the gaps with their matching actual-holes. The
string- (or character-) denotations "a" and "b" are hole-lndications. Their
syntax is quite different from other indications in the language because
they do not obey the usual identification rules of other indicators. Indeed
they must be unique within the program. Normally, they should be of the form
letter followed by letters or digits, but the formal definition allows some
flexibility to suit the local operating environment (I0.6.2.b) so that
implementers can, for example, interpret them as the names of the files
where the relevant interface information has been stored.

Holes also provide a mechanism for introducing program segments written
in other languages. Suppose, for example, that the implementer has provided
means to access FORTRAN subroutines. Then users would be allowed to write
declarations such as the following:

PROC(REAL)REAL function : NEST FORTRAN "FUNCTION";

The compiler would then know to generate a FORTRAN-style calling sequence at
calls of 'function', and the loader would be instructed to find the
subroutine FUNCTION in some FORTRAN-style library. The Formal Definition
contains an example (5.6.1.g) of what the syntax might permit for this
facility.

There are some problems, especially for implementations using the
static/dynamic chain method of keeping track of their stack frames,
concerning the scope of routlne-texts whose bodies contain formal-holes. The
scope of such a routine is therefore made to be the smallest possible scope,
as if its body had contained identifiers identifying defining occurrences

AB 43p.27

in every range within which it was contained (just in case the actual-hole
eventually stuffed were to contain such identifiers). Thus the elaboration
of the following is always undefined:

LOC PROC (REAL) REAL pp;
BEGIN
LOC REAL x;
PROC p : (REAL a) REAL: NEST "p";
pp :: p

END

(because the actual-hole stuffed into "p" might contain an application of
'x'). However, it is usually easy to avoid the problem entirely by writing,
for example:

PROC(REAL)REAL p = NEST "p";

rather than

PROC p : (REAL a)REAL: NEST "p";

In addition to stuffing an actual-hole into a formal-hole, several
definition-module-packets may be stuffed as well. Thus we can have

EGG "a" : MODULE A : DEF ... FED

EGG "a" : MODULE B = ACCESS A DEF ... FED

and finally
EGG "a" : BEGIN ... ACCESS A,B (...) ... END

Presumably, these (or at least their PUBlic interfaces) would have to be
compiled in the order given, but to avoid all possibility of confusion there
is a restriction that A and B must not be identifiable (neither as
module-indications, nor as mode-indlcations, nor as operators) in the NEST
"a" into which these EGGs are to fit. Indeed, it is reasonable to imagine
that all the packets in the VIBRATIONS and STRESSES example above had been
stuffed into a formal-hole representing the standard-prelude, as if they had
been preceded by an implicit 'EGG "standard prelude" ='. (Thus, whether the
standard-prelude is to be regarded as a definition module or as a
formal-hole is purely a matter of taste - moreover actual implementers are
likely in fact to treat it as a special case different from either.)

6 Compilation systems.

A "module-interface" is the document (written in some cryptic notation
only understood by the compiler) which conveys information about PUBlicized
declarations from a separately compiled definition module to its accessors.
A "hole interface" does the same thing between a formal- and an actual-hole.
Interfaces are output by the compilation of the packets which define them
and may be re-input when compiling packets which require them.
Alternatively, a module-interface (produced by a previous compilation of a
definition-module-packet) may be "imposed" on a recompilation of that
packet, ensuring if possible that the object-module produced is still
consistent with that interface. In this way, re-compilation of other packets
dependent upon that interface can be avoided. (However, we see no reasonable
hope of imposing hole-interfaces.)

AB 43p.28

7 Order of compilation.

Clearly, a hole must be compiled before its stuffing. Ordinarily, a
particular-program or module must be compiled after any separately compiled
module which it accesses. However, this order can be varied by using imposed
interfaces.

Suppose that a user wishes to have a module A which is to be used by a
main program B, but that he wishes to compile (and even partially test) B
before A. He therefore writes a skeletal module-declaration A' which
contains just enough to fix the interface between A and B. A' is compiled to
produce a module-interface A' (presumably this contains, inter alia, offsets
for the indicators PUBlicized in A'). B is now written and compiled using A'
(moreover the object-module produced for B is aware of the time stamp that
was given to A' at its instant of creation). Next, the final version of A is
written but, when it is compiled, the module-interface A' is imposed upon
it. Clearly, the compiler will abort if A is not "consistent" with ~'.
Compiler writers should be encouraged to make their definitions of
"consistent" as liberal as possible. For example, there should be no
difficulty in accepting the offsets fixed in A' even if the corresponding
indicators in A turn out to have been declared in a different order. Note
that no new interface ~ is produced. If now A is to be recompiled to mend
some bug, and it is hoped to avoid re-compilation of B, then the inferface
produced by or imposed upon the previous compilation of A (e.g. A') should
be imposed and the compiler will try to produce an object module consistent
with it if it possibly can. If it cannot, it will say so, signifying that
recompilation of B cannot now be avoided.

Of course, the user should be aware that he may gain in efficiency, or in
improved optimizations, or in the reduction of wasted space, if he finally
recompiles A to produce its best interface A, and then re-compiles B using
A.

8 Formal definition.

The formal definition of these proposals which follows uses the existing
formalism and conventions of the Revised Report. Note that, although it is
expressed ~s modifications to the Report, no authority to alter the official
Report text is implied. Moreover, these particular modifications have been
chosen so as to minimize the number of places in the Report affected, and
had these features been part of the language from the very beginning, their
formal definition might have been simpler.

AB 43p.29

Formal Definition of Modules and Seoar@%@ ComDil%t~gn.

Part I - Definition Modules.

{{Module-declarations are new kinds of declarations. New kinds of entry in
the nest are therefore needed.}}

1.2.3.
B) LAYER :: new DECSETY LABSETY INKSETY.
E) DEC :: ... ; MOD.
L) MODSETY :: MODS ; EMPTY.
M) MODS :: MOD ; MODS MOD.
N) MOD :: module REVS TAB.
O) REVSETY :: REVS ; EMPTY.
P) REVS :: REV ; REVS REV.
Q) REV :: TAU reveals DECSETY INKS.
R) TAU :: MU.
S) INKSETY :: INKS ; EMPTY.
T) INKS :: INK ; INKS INK.
U) INK :: invoked TAU.

4.8.1.
E)
F)

PROP :: ... ; INK.
QUALITY :: ... ; module REVS ; invoked.
TAX :: ... ; TAU.

{{'MOD's will be introduced into the nest by module-declarations. 'INK's
will be introduced by module-calls.}}

{{New kinds of indicator areneeded to identify these new properties.}}

4.8.1.
A) INDICATOR :: ... ; module indication.

{{Modules are ascribed to module-indications by means of module-
declarations.}}

4.9. Module declarations

4.9.1. Syntax

a)

b)

NESTI module declaration of MODS{41a,e} :
module{94d} token,

NESTI module joined definition of MODS{41b,c}.
NESTI module definition of module REVSETY REV TAB{41c} :

where <REV> is <TAU reveals DECSETY invoked TAU>
and <TAB> is <bold TAG>,

where <NESTI> is <NOTIONI invoked TAU NOTETY2>,
unless <NOTIONI NOTETY2> contains <invoked TAU>,
module REVSETY REV NESTI defining module indication

with TAB{48a},
is defined as{94d} token,
NESTI module text publishing REVSETY REV defining LAYER{c,-}.

AB 43P.30

c) NESTI module text
publishing REVSETY TAU reveals DECSETY INKSETY INK
defining new DECSETYI DECSETY INK{b} :

where <INKSETY> is <EMPTY> and <REVSETY> is <EMPTY>,
def{94d} token,
NESTI new new DECSETYI DECSETY INK module series

with DECSETY without DECSETYI{d},
fed{94d} .token ;

NESTI revelation publishing REVSETY defining LAYER{36b},
def{94d} token,
NESTI LAYER new DECSETYI DECSETY INK module series

with DECSETY without DECSETYI{d},
fed{94d} token,
where <LAYER> is <new DECSETY2 INKSETY>.

d) NEST3 module series with DESCETY without DECSETYI{c} :
NEST3 module prelude with DECSETY without DECSETYI{e},

NEST3 module postlude{f} option.
e) NEST3 module prelude with DECSETY1 without DECSETY2{d,e} :

strong void NEST3 unit{32d}, go on{94f} token,
NEST3 module prelude with DECSETYI without DECSETY2{e} ;

where<DECSETYI without DECSETY2> is
<DECSETY3 DECSETY4 without DECSETY5 DECSETY6>,

NEST3 declaration with DECSETY3 without DECSETY5{41e},
go on{94f} token,
NEST3 module prelude with DECSETY4 without DECSETY6{e} ;

where <DECSETYI without DECSETY2> is <EMPTY without EMPTY>,
strong void NEST3 unit{32d} ;

NEST3 declaration with DECSETYI without DECSETY2{41e}.
f) NEST3 module postlude{d} :

postlude{94d} token, strong void NEST3 series with EMPTY{32b}.
g)* module text :

NEST module text publishing REVS defining LAYER{c}.

{Examples:
a) MODULE A : DEF STRING s; read(s);

PUB STRING t = "file"+s, PUB REAL a FED,
B : ACCESS A DEF PUB FILE f;

open(f, t, standin channel)
POSTLUDE close(f) FED

b) A = DEF STRING s; read(s);
PUB STRING t = "file"+s, PUB REAL a FED .

B = ACCESS A DEF PUB FILE f;
open(f, t, standin channel)
POSTLUDE close(f) FED

c) DEF STRING s; read(s);
PUB STRING t = "file"+s, PUB REAL a FED .

ACCESS A DEF PUB FILE f;
open(f, t, standin channel) POSTLUDE close(f) FED

d) STRING s; read(s); PUB STRING t = "file"+s, PUB REAL a .
PUB FILE f; open(f, t, standin channel) POSTLUDE close(f)

e) STRING s; read(s); PUB STRING t : "file"+s, PUBLIC REAL a .
PUB FILE f; open(f, t, standin channel)

f) POSTLUDE close(f) }

{Rule b ensures that a unique 'TAU' is associated with each module-text
accessible from any given point in the program. This is used to ensure
that an 'invoked TAU' can be identified (7.2.1.a) in the nest of all
descendent constructs of any access-clause or module-text which invokes
that module-text.

In general, a module-text-pub!ising-REVS-defining-LAYER T makes 'LAYER'

AB 43P.31

visible within itself, and makes the properties revealed by 'REVS' visible
wherever T is accessed• 'LAYER' includes both a 'DECSETY' corresponding to
its public declarations (e.g. t and a in the first module-text of example
c), a 'DECSETYI' corresponding to its hidden declarations (e.g. s in that
example) and an 'INK' which links T to its unique associated 'TAU' and
signifies in the nest that T is now known to be invoked. 'REVS' always
reveals 'DECSETY INKSETY INK' (but not 'DECSETYI'), where 'INKSETY'
signifies the invocation of any other modules accessed by T. 'REVS' may
also reveal the publications of the other modules accessed by T if their
module-calls within T contained a public-token.}

4.9.2• Semantics

a) A "module" is a scene {2.1.1.1.d} composed of a module-text together
with an environ {2.1.1.1.c}.

b) A module-declaration D is elaborated as follows:
. the constituent module-texts of D are elaborated collaterally;
For each constituent module-definition DI of D,

. the yield {c} of the module-text of DI is ascribed {4.8.2.a} to the
defining-module-indication of DI.

c) The yield of a module-text T, in an environ E, is the module composed
of

(i) T, and
(ii) the environ necessary for {7.2.2.c} T in E.

d) A module-prelude C in an environ E is elaborated as follows:
• its unit or declaration is elaborated in E;
If another module-prelude D is directly descended from it,
then D is elaborated in E
{; otherwise, the elaboration of C is completed}.

{{The declarations in a module-prelude must contain public-symbols if they
are to be visible when the module is accessed.}}

4.1.1.
A) COMMON :: ... ; module.

e) NEST declaration with DECSETY without DECSETYI{49e} :
where <DECSETY without DECSETYI> is <EMPTY without DECSI>,

NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-} ;
where <DECSETY without DECSETYI> is <DECS without EMPTY>,

public{94d} token,
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-} ;

where <DECSETY without DECSETYI> is
<DECSETY without DECSI DECSETY2>,

NEST COMMON declaration of DECS1{42a,43a,44a,e,45a,49a,-},
and also{94f} token,
NEST declaration with DECSETY without DECSETY2{e} ;

where <DECSETY without DECSETYI> is
<DECS DECSETY3 without DECSETYI>,

public{94d} token,
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,49a,-},
and also{94f} token,
NEST declaration with DECSETY3 without DECSETYI{e}.

{{Modules may be invoked by means of access-clauses.}}

A) ENCLOSED :: ... ; access.

AB 43p.32

3.6. Access clauses

3.6.1. Syntax

a) SOID NEST access clause{5D,551a,A341h,A349a} :
NEST revelation publishing EMPTY defining LAYER{b},

SOID NEST LAYER ENCLOSED clause{a,31a,33a,c,d,e,34a,35a,-}.
b) NEST revelation publishing REVSETY

defining new DECSETY INKSETY{a,49c} :
access{94d} token,

NEST joined module call publishing REVSETY revealing REVS{c},
where DECSETY INKS revealed by REVS{e,f}

and NEST filters INKSETY out of INKS{h}.
C} NEST joined module call publishing REVSETY revealing REVS{b,c} :

NEST module call publishing REVSETY revealing REVS{d,-} ;
where <REVSETY> is <REVSETYI REVSETY2>

and <REVS> is <REVSI REVS2>,
NEST module call publishing REVSETYI revealing REVSI{d,-},
and also{94f} token,
NEST joined module call publishing REVSETY2 revealing REVS2{o}.

d) NEST module call publishing REVSETY revealing REVS{c} :
where <REVSETY> is <EMPTY>,

module REVS NEST applied module indication with TAB{48b} ;
where <REVSETY> is <REVS>,

public{94d} token,
module REVS NEST applied module indication with TAB{48b}.

e) WHETHER DECSETYI DECSETY2 INKSI INKSET¥2 revealed by
TAU reveals DECSETYI INKSI REVSETY3
TAU reveals DECSETYI INKSI REVSETY4{b,e,f} :

WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by
TAU reveals DECSETYI INKSI REVSETY3 REVSETY4{e,f}.

f) WHETHER DECSETYI DECSETY2 INKSI INKSETY2 revealed by
TAU reveals DECSETYI INKSI REVSETY2{b,e,f} :

WHETHER DECSETY2 INKSETY2 revealed by REVSETY2
and DECSETYI independent DECSETY2{71a,b,c}.

g) WHETHER EMPTY revealed by EMPTY{e,f} : WHETHER true.
h) WHETHER NEST filters INKSETYI out of INKSETY INK{b} :

unless INK identified in NEST{72a},
WHETHER <INKSETYI> is <INKSETY2 INK>

and NEST INK filters INKSETY2 out of INKSETY{h,i} ;
where INK identified in NEST{72a},

WHETHER NEST filters INKSETYI out of INKSETY{h,i}.
i) WHETHER NEST filters EMPTY out of EMPTY{h} : WHETHER true.

{Examples:
a) ACCESS A, B (get(f, a); print(a))
b) ACCESS A, B
C) A, B
d) A • PUB B }

{In rule b, the 'invoked TAU's enveloped by 'INKS' represent those
modules wh ich might need to be invoked at any modu!e-ca11 whose
applied-module-indication identified a particular defining-
module-indication, whereas those enveloped by 'INKSETY' represent only
those which need invocation in the particular c(hntext, the remainder
having already been elaborated, as can be determinexi statically from the
'NEST'. The presence of 'INKSETY' in the nest of all descendent constructs

AB 43P.33

of the access-clause ensures that all modules now invoked will never be
invoked again within those descendents.

Rule f ensures the independence of declarations revealed by one
revelation; thus

MODULE A = DEF PUB REAL x FED, B = DEF PUB REAL x FED;
ACCESS A, B (x)

is not pA'oduced. However, rule e allows a given declaration to be revealed
by two public accesses of the same module, as in

MODULE A = DEF PUB REAL x FED;

MODULE B = ACCESS PUB A DEF REAL y FED,

C = ACCESS PUB A DEF REAL z FED;
ACCESS B, C (x+y+z)

in which the module-deflnitions for both B and C reveal x, by virtue of
the PUB A in their constituent revelations.}

{{Note that a particular-program may now consist of a joined-label-
definition followed by an access-clause. The defining-module- indications
identified thereby would be in the library-prelude or the user-prelude.}}

3.6.2• Semantics

a) A SOID-NEST-access-clause N, in an environ E, is elaborated as
follows:
If there exists a "first uninvoked" {b} module M of the revelation R of N
in E, with respect to 'NEST',
then

let M be composed from a module-text-defining-new-PROPSETY-INK T
itogether with a necessary environ};
• M is invoked {c} in E, giving rise to a new environ E4 {inside whose
locale 'INK' accesses the result of invoking M};

let Y be the yield {a} in E4 of a SOID-NEST-INK-access-clause akin to
N {, in which M will be known to be already invoked};
• {M is revoked, i.e.} the series of the constituent postlude, if any,
of T is elaborated in E4;
• the yield of N in E is Y;
• it is required that Y be not newer in scope than E;

otherwise,
• let E2 be the environ established around and beside E according to R
{the locale of E2 corresponds to the publicized properties of the
modules accessed by R};
. E2 is "furnished" {d} with {the values publicized by the constituent
module-calls of} R in E;
• the yield of N in E is the yield of the ENCLOSED-clause of N in E2;

b) The "first uninvoked" module of a revelation R in an environ E is
determined, with respect to some 'NEST', as follows:
If there exists some constituent module-call-revealing-REVSETY-TAU-
reveals-PROPSETY-INK C of R such that the predicate 'unless INK identified
in NEST' holds, and which is the textually first such module-call,
then

. let the yield of the applied-module-indication of C in E be a {not
yet invoked} module M composed of a module-text T and an environ El
{necessary (7.2.2.c) for T};
If T has a revelation S,

and if there exists a first uninvoked module MI of S in El with
respect to 'NEST',
then MI is the first uninvoked module of R;
otherwise, M is the first uninvoked module of R;

otherwise, there is no first uninvoked module of R.

AB 43p.34

{Observe that the choice of C from among the module-calls of R depends
only on 'NEST' and not on E. It follows, therefore, that the choice can
always be made at compile time. E is only required in order to obtain the
correct necessary environ for M.}

c) A module composed of a module-text-defining-new-PROPSETY-INK T and an
environ El {necessary for T} is invoked in an environ E as follows:
If T has a{n already invoked} revelation S,
then

• let E2 be the environ established around El, beside E, according to
S;
• the locale of E2 is "furnished" {d} with {the values publicized by
the descendent module-calls of} S in E;

otherwise, let E2 be El;
• let E3 be the environ established around E2 and, if E is a "module
locating environ" {see below}, then beside E and otherwise upon E,
according to T {the locale of E3 corresponds to all the properties
(publicized or not) declared in T};
• 'INK' is made to access the module composed of T and E3 inside ~he
locale of E3 {so that, within T, T itself will be seen to be already
invoked};
• the constituent module-prelude of T is elaborated in E3;

let E4 be the environ, known as a "module locating environ",
established around E, beside E3, according to some
NOTION-defining-new-INK;
• 'INK' is made to access the module composed of T and E3 inside the
locale of E4;
• the invoking of M is said to "give rise" to the environ E4.

{Observe that all the environs created during the invocation of the
uninvoked modules (b) of the revelation of an access-clause N have the
same scope, which is newer than that of the environ in which N is being
elaborated but older than that of any environ created during the
elaboration of the ENCLOSED-clause of Ni}

d) A locale L is "furnished" with a revelation R in an environ E as
follows:
For each descendent module-REVS-applied-module-indication of R,

For each 'TAU reveals PROPS' enveloped {1.1.4.1.c} by 'REVS',
• let the module "accessed" {e} by 'invoked TAU' inside E {it will be
found in some module locating environ (c)} be a{n already invoked}
module composed of a module-text T and an environ E3 {in which its
module-prelude was formerly elaborated};
For each value or scene accessed inside the locale of E3 by some
'PROP',

If 'PROPS' envelops that 'PROP' ('PROP' is to be publicized},
then 'PROP' is made to access that value or scene (if it does not so
access it already) inside L also•

e) The value or scene "accessed" by a 'PROP' inside an environ E,
composed of a locale L and an environ El, is the value or scene accessed
by 'PROP' inside L {2.1.2.c}, if L corresponds to a 'FROPSETY' enveloping
{1.1.4.1.c} that 'PROP', and, otherwise, the value or scene accessed by
'PROP' inside El.

{{Establishment "beside" an environ (as opposed to "upon" it) requires a
change to 3.2.2.b. The first bullet of that rule becomes:}}

. upon or beside an environ El, possibly not specified, (which determines
its scope,}

{{The two bullets commencing "if El is not specified ..." become:}}
. if El is not specified, then let El be E2 and let "upon El" be

AB 43P.35

assumed;
• E is newer in scope than El (is the same in scope as El) if the
establlshment is upon El (is beside El) and is composed of E2 and a new
locale corresponding to 'PROPSETY', if C is present, and to 'EMPTY'
otherwise;

{{Various new symbols have been invented:}}

9.4.1.d
module symbol{49a}
access symbol{36b}
def symbol{49c}
fed symbol{49c}
public symbol{36d,41e}
postlude symbol{49f}

MODULE
ACCESS
DEF
FED
PUB
POSTLUDE

{{Moreover, two more new symbols are yet to be invented for use in
compilation:}}

formal nest symbol{56b} NEST
egg symbol{A6a,c} EGG

separate

{{Minor changes are required at other places in the Report.}}

{{Identification}}

7.2.1.c+2 # , :>
or <QUALITYI> is <module REVS> or <QUALITYI> is <invoked>, #

{{The proper identification o f indicators declared via module-calls
ensured as follows:}}

is

3.0.1.
f)* NEST range : ... ;

NEST module text publishing REVS defining LAYER{49c,-} ;
NEST LAYER I LAYER2 module series

with DECSETY without DECSETYI{49d} ;
SOID NEST access clause{36a}.

7.2.2.
b) The defining NEST-range {a} of each QUALITY-applied-indicator-
with-TAX II contains {of necessity} either a QUALITY-NEST-LAYER-
defining-indicator-with-TAX I2, or else one or {possibly} more
applied-module-indications I3 directly descended from
NEST-module-calls-revealing-REVS where 'REVS' envelops 'QUALITY TAX'. II
is then said to "identify" that I2 or each of those I3.

{{This is sufficient to ensure, in conjunction with 7.2.2.c, the proper
scope for routines containing access-clauses.}}

{{1.1.4.2.c. The list of elidlble hypernotions must include:}}
... "without DECSETY" . "publishing REVSETY" . "revealing REVSETY"

{{The 'PROPSETY' to which a locale corresponds may now include
'INKSETY'.}}

an

2.1.1.1.b+I,+2,+4 # LABSETY => LABSETY INKSETY #

{{Revised pragmatic remark concerning scopes:}}

AB 43p.36

2.1.1.3.
b) Each environ has one specific "scope". {The scope of each environ is
never "older" (2.1.2.f) than that of the environ from which it is composed
(2.1.1.1.c).}

{{A module-text and a revelation must be establishing-clauses.}}

3.2.1.
i)* establishing clause : ... ;

NEST module text publishing REVS defining LAYER{49c,-} ;
NEST revelation publishing REVSETY defining LAYER { 36a,- }.

Part II - Separate Compilation

{{Separate compilation is performed by dividing a program into packets. Some
packets contain formal-holes, indicated by the nest-symbol, into which
actual-holes, contained in other packets and indicated by the egg-symbol,
may be stuffed.}}

5.1.
A) UNIT :: ... ; formal hole ; virtual hole.

5.6. Holes

5.6.1. Syntax

A) LANGUAGE :: algol sixty eight.
Extra hypernotions {e.g. "fortran"}
metaproduction rule.

B) ALGOL68 :: algol sixty eight.

may be added to the above

a)

b)

c)

d)

e)
f)
indication" are to be added for each extra terminal
"LANGUAGE", each containing just one alternative,
distinct 'bold TAG token'.

strong MOID NEST virtual hole{5A} :
virtual nest symbol, strong MOID NEST closed clause{31a}.

strong MOID NEST formal hole{5A} :
formal nest{94d} token, MOID LANGUAGE indication{e,f,-},

hole indication{d}.
MOID NEST actual hole{A6a} :

strong MOID NEST ENCLOSED clause{31a,33a,c,34a,35a,36a,-}.
hole indication{b} :

character denotation{814a} ; row of character denotation{83a}.
MOID ALGOL68 indication{b} : EMPTY.
Additional hyper-rules, for hypernotions of the form "MOID LANGUAGE

metaproduction of
which is to be a

{These MOID-LANGUAGE-indications may have severely restricted 'MOID's.
For example, the following has been suggested:

FORT fortran indication :
bold letter f letter o letter r letter t

letter r letter a letter n token.
where

LA~UAGE :: ... ; fortran.
FORT :: procedure with PERFORMERS yielding FOID ;

procedure yielding FOID.
PERFORMERS :: PERFORMER ; PERFORMERS PERFORMER.
PERFORMER :: FODE parameter.

AB 43P.37

FODE :: FAIN ; F~gT ; reference to FAIN ; ROWS of FAIN.
FAIN :: real ; long real ; integral ; COMPLEX ; boolean•
COMPLEX :: structured with real field letter r letter e

real field letter i letter m mode.
FOID :: FAIN ; void.

Although FORTRAN is now a fortran-indication, it may still be used, if
desired, as an operator or as a mode-indication.}

{Examples:
b) NEST "abc"
c) ACCESS A,B (x:=1; y:=2; print(x+y))
d) "a" . "abc" }

{Since no representation is provided for the virtual-nest-symbol, the
user is unable to construct vlrtual-holes for himself, but a mechanism is
provided (I0.6.2.a) for constructing them out of formal- and
actual-holes.}

{The yield of a virtual-hole is that if its closed-clause, by way of
pre-elaboration (2.1.4.1.c). No semantics for formal- or actual-holes is
provided since their elaboration is never called for.}

{{There are some implementation difficulties in determining the scope of a
routine whose routine-text contains a formal-hole, since there is no knowing
what indicators may be applied in the actual-hole eventually supplied.}}

7.2.2.c is modified as follows:

If C contains any QUALITY-applied-indicator-with TAX

• . . e

or if C contains a virtual-hole,
then E is El;
e e e

{{Thus a formal-hole F behaves for scope purposes as if the actual-hole
stuffed in its place contained identifiers identifying defining occurrences
in every range containing F.}}

{{The packets to be submitted to the compiler for separate compilation may
be module-declarations or actual-holes (or particular-programs) and, if they
are to be stuffed into formal-holes (rather than into the standard
environment), they are introduced by egg-symbols.}}

10.6. Packets

10•6•I. Syntax

a) MOlD NEST new MODSETY ALGOL68 stuffing packet{ATa} :
egg{94d} token, hole indication{56d}, is defined as{94d} token,

MOID NEST new MODSETY actual hole{56c}.
b) Additional hyper-rules, for hypernotions of the form "MOID NEST new
MODSETY LANGUAGE stuffing packet" are to be added for each extra {5.6.1.A}
terminal metaproduction of "LANGUAGE". A mechanism must be defined
{presumably with the aid of the Report defining that other language}
whereby all such LANGUAGE-stuffing-packets may be transformed into
ALGOL68-stuffing-packets {with the same meaning}•
c) NEST new MODSETYI MODS definition module packet of MODS{ATa} :

egg{94d} token, hole indication{56d}, is defined as{94d} token,

AB 43P.38

NEST new MODSETYI MODS module declaration of MODS{49a},
where MObS absent from NEST{e}.

d) new LAYERI new DECS MODSET¥1MODS STOP
prelude packet of MODS{A7a} :

new LAYERI new DECS MODSETYI MODS STOP
module declaration of MODS{49a},

where MObS absent from new LAYERI{e}.
e} WHETHER MODSETY MOD absent from NEST{c,d} :

WHETHER MODSETY absent from NEST{e,f}
and MOD independent PROPSETY{71a,b,c},

where PROPSETY collected properties from NEST{g,h}.
f) WHETHER EMPTY absent from NEST{e} : WHETHER true.
g) WHETHER PROPSETY! PROPSETY2 collected properties from

NEST new PROPSETY2{e,g} :
WHETHER PROPSETYI collected properties from NEST{g,h}.

n) WHETHER EMPTY collected properties from new EMPTY{e,g} :
WHETHER true.

i)* NEST new PROPSETY packet :
MOID NEST new PROPSETY LANGUAGE stuffing packet{a,b} ;
NEST new PROPSETY definition module packet of MObS{c} ;
NEST new PROPSETY particular program{A1g} ;
NEST new PROPSETY prelude packet of MODS{d}.

j)* letter symbol : LETTER symbol{94a}.
k)* digit symbol : DIGIT symbol{94b}.

{Examples:
a) EGG "abc" : ACCESS A,B (x::1; y::2; print(x+y))
c) EGG "abc" = MODULE A = DEF PUB REAL x FED
d) MODULE B = DEF PUB REAL y FED
The three examples above would form a compatible collection of packets

(I0.6.2.a) when taken in conjunction with the partlcular-program
BEGIN NEST "abc" END }

{In rule a above, 'MODSETY' envelops the 'MOD's defined by all the
definition-module-packets that are being stuffed along with the
stuffing-packet. In rules c and d, 'MODSETYI' need only envelop the 'MOD's
for those modules actually accessed from within that packet. The semantics
below are only defined if, for a collection of packets being stuffed
together, all the 'MOD's enveloped by the various 'MODSETYI's are
enveloped by 'MODSETY'.}

10.6.2. Semantics

{Packets are the units of separate compilation• It is necessary to
define the meaning of a collection of packets• This is done by
transforming the collection into an equivalent particular-program. It is,
of course, necessary for the packets of the collection to be compatible
with each other. Just one of the packets must be a particular-program.}

a) The meaning of a particular-program P, in the context of a collection
of other associated packets {not particular-programs} T, is determined as
follows:
• The user-prelude-with-MODSETY UP of the user-task UT from which P is
descended {1.1.1.e and I0.I.1.f} must be composed as follows:

For each new-LAYER1-new-DECS-MODSETYI-STOP-prelude-packet M, if any, in
T,

• UP contains a constituent new-LAYER1-new-DECS'MODSETY-STOP-
module-declaration akin to the module-declaration of M; {'MODSETY'
must envelop all the 'MOD's enveloped by all such 'MODSETYI's, and no
others, for the user-prelude of U to be syntactically correct;}

• UP contains no other constituent COMMON- declarations, and its only

AB 43P.39

constituent unit is composed of a skip {5.5.2.1.a};
If T contains any LANGUAGE-stuffing-packets, where 'LANGUAGE' is not
'ALGOL68',
then those packets are transformed {I0.6.1.b} into ALGOL68-stuffing-
packets {with the same meanings};
While there remain any formal-holes in UT,

• let H be one such MOID-NEST-formal-hole and let I be its
hole-lndication;
• if I is akin to any such I previously considered, then the meaning of
P is not defined;
• H is replaced {in UT} by a MOID-NEST-virtual-hole whose constituent
NEST-serial-clause S is composed as follows:

For each NEST-new-MODSETY1-definition-module-packet M, if any, in T
whose hole-indication "matches" {b} I,

• S contains a constituent NEST-new-MODSETY-module-declaration akin
to the module-declaration of M; {'MODSETY' must envelop all the
'MOD'S enveloped by all such 'MODSETYI's, and no ohers, for S to be
syntactically correct;}

• S contains no other constituent COMMON-declarations, and its only
constituent unit is composed of the constituent ENCLOSED-clause of the
{only} MOID-NEST-new-MODSETY-ALGOL68-stuffing-packet in T whose
hole-indication matches I;

If there remain any packets in T that have not been incorporated into U,
then the meaning of P is not defined;
otherwise, {UT does not contain any formal-holes, and therefore} the
meaning of P is as defined elsewhere {1.1.1.e} by the semantics of the
Report•

b) If the {textually} first constituent string-item of a hole-indication
I is composed of some letter-symbol and each other constituent
string-item, if any, is composed of some letter-symbol or some
diglt-symbol, the I "matches" any other hole-indication to which it is
akin {; otherwise, its matching with other hole-indications (whethr akin
or not) is not defined here, but may be defined by local conventions of
the implementation to suit the peculiarities of the local operating
environment}.

{{The standard environment
for each particular-program,
prelude-packets•}}

is enlarged by the inclusion of a user-prelude
into which the user may stuff his own

10.1.1.

A) EXTERNAL :: ... ; user.

f) NESTI user task{d} :
NEST2 particular prelude with DECS{c},

NEST2 user prelude with MODSETY{c},
NEST2 particular program{g} PACK, gQ on{94f} token,
NEST2 particular postlude{i},
where <NEST2> is <NESTI new DECS MODSETY STOP>•

10.1.2
f) Except where explicitly stated otherwise {I0.6.2.a}, each constituent
user-prelude of all program-texts is EMPTY.

Part III- Compilation Systems

{{Although the Report defines the meaning of a particular-program (and, with

AB 43p.40

the addition of the new section 10.6, of a collection of compatible packets)
without reference to the process of compilation (except pragmatically in
2.2.2.c), a proposal for separate compilation will not be of practical use
unless the majority of implementations observe at least some degree of
consistency in their compilation systems.}}

10.7. Compilation systems

An implementation of ALGOL 68 {2.2.2.c} in which packets of a
{compatible} collection {10.6.2} are compiled into a collection of
object-modules should conform to the provisions of this section.

10.7.1. Syntax

A)* LAYERS :: LAYER ; LAYERS LAYER.

a) compilation input :
MOID NEST new MODSETY LANGUAGE stuffing packet{A6a,b},

MOID NEST hole interface{d},
joined module interface with MODSETY{b,c} ;

NEST new MODSETYI MODS definition module packet of MODS{A6c},
MOID NEST hole interface{d},
Joined module interface with MODSETYI{b,c},
module interface with MODS{d} option ;

new LAYERI new DECS MODSETY STOP particular program{AlE},
{void new LAYERI new DECS STOP hole interface,}
unless <DECS> contains <module>,
joined module interface with MODSETY{b,c} ;

new LAYERI new DECS MODSETYI MODS STOP
prelude packet of MODS{A6d},

{void new LAYERI new DECS STOP hole interface,}
unless <DECS> contains <module>,
Joined module interface with MODSETYI{b,c},
module interface with MODS{d} option.

b) Joined module interface with MODS MODSETY{a,b} :
module interface with MODS{d},

joined module interface with MODSETY{b,c}.
c) Joined module interface with EMPTY{a,b} : EMPTY.
d) Hyper-rules are to be added for the hypernotions "MOID NEST hole
interface", "module interface with MODS" and "MOID NEST object module"
{the first two to be} such that, from the terminal production of each
MOID-NEST-hole-interface (each module-interface-with-MODS), a 'MOIDI
NESTI' equivalent {2.1.1.2.a} to 'MOID NEST' (a 'MODSI' equivalent to
'MODS') can be reconstructed. {The forms of these hyper-rules are
otherwise undefined, and their terminal productions will most probably be
in some cryptic notation understood only by the compiler.}

{The inclusion of the hypernotions "void new LAYERI new DECS STOP hcle
interface" within pragmatic remarks in rule a is intended to signify that
this information (which describes the standard environment) must clearly
be available to the compiler, but that it may well not be provided in Lhe
form of an explicit hole-interface.}

10.7.2. Semantics

a) A compilation-input C may be compiled by a compiler. The output from
the compiler is determined as follows:
Case A: the packet of C is a MOID-NESTI-ALGOL68-stuffing-packet:

. the compiler-output is a MOID-NEST1-obJect-module;

AB 43p.41

Case B: the packet of C is a NEST1-particular-program:
. the comiler output is a void-NEST1-object-modu!e ;

Case C: the packet of C is a NEST1-definition-module-packet-of-MODS or a
NEST1-prelude-packet-of-MODS D:

• the compiler output consists of
(i) a void-NEST1-object-module, and
(ii) if the module-interface-with-MODS-option of D is EMPTY, a
module-interface-with-MODS {; otherwise, the constituent module-
interface-with-MODS of D is said to be an "imposed interface"
(obtained from the previous compilation of a similar packet) and the
compiler must fail if the imposed interface is no longer "consistent"
with the packet};

{Case D: the packet of C is a LANGUAGE-stuffing-packet where 'LANGUAGE' is
not 'ALGOL68':

• the compilation process is not defined by this Report;}
For each MOID-NEST-LAYERS-formal-hole contained in the NEST-packet of C,

. the compiler output includes, additionally, a MOID-NEST-LAYERS-
hole-interface.

b) The module-interfaces and hole-interfaces output by the compiler may
subsequently be used, together with appropriate packets, as
compiler-inputs. If a collection of packets, including a
particular-program P whose meaning is defined {I0.6.2.a} in the context of
that collection, is compiled so as to produce a corresponding set of
object-modules, then the meaning of those object-modules is the same as
the meaning of P.

{A complete system may include a compiler, a loader, and a means to
maintain a library of packets, hole-interfaces, module-interfaces and
object-modules (the means might be an operating system, a utility program
written for the purpose, or a filing cabinet plus a little girl). The
assemblage of the various objects required for a compilation-input and the
disposal of the various compiler outputs may involve the user in writing
control cards, or pragmats, or other forms of command, and in providing
libraries of such objects to be scanned. Neither the detailed contents of
such a system nor the specific forms of such commands are defined in this
Report•

If a packet P is modified and re-compiled, the system should ensure that
the revised collection of object-modules cannot be used until all packets
dependent upon P have been re-compiled. It is suggested that all the
outputs produced by a given compilation be given a unique serial number
from a monotonically increasing set (the date and time, for example) and
that object modules be aware of the serial numbers of other compilationa
upon which their validity depends. However, where the compiler detects
that a hole- or module-interface is unchanged from a previous compilation
of the same packet, or if a module-interface is imposed on a compilation
and the compiler is able to produce an object-module "consistent" with
that module-interface, then the old serial number may be retained. The
definition of "consistent" should be as liberal as possible• For example,
it should be possible for the compiler to compile a packet consistent with
the object-module produced by a previous compilation of that packet even
if the indicators published by the packet are now declared in a different
order or if declarations for additional indicators have been added.}

AB 43p.42

Implementation methods for Modules and Separate compilation.

This implementation description does not contain language definition. It
presents various ways in which the above features can be implemented. No
implementer should feel committed to do things as described here, though he
may well profit from the thought that has gone into these methods. The same
language facilities may well be implementable in other ways. Two mechanisms
are described. One is a mechanism for implementing separate compilation, and
the other a mechanism for implementing definition modules.

The notation "MR" will be used to refer to the Revised Report as extended
by the Formal Definition above.

I Separate compilation.

The separate compilation methods for the features defined above hinge on
the idea of a "compilation data base". This data base contains information
about the various separately compiled parts of a program, and is used to
enable static mode checking to be done across compilations and to enable
efficient object code to be generated. The data base contains information
grouped into "interfaces". Each interface contains the relevant information
from a single separate compilation and is constructed by the compiler in
addition to the usual object code. When a program is compiled whose meaning
depends on other separately compiled parts, the compiler extracts the
relevant interfaces from the data base. The data base itself may be
implemented in different ways, depending on the implementation environment.
It may, for example, be managed directly by the compiler, by an operating
system which demands its own extra control cards, or even by a clerk with a
drawer full of paper tapes. If the operating system's file system is divided
into subsets for various users with varying access rights, it is probably
wise to permit the data base to be spread out throughout the operating
systems's files in the same way. Each user then has control of that part of
the data base that relates to his own programs, without requiring
installation management to set up separate administration procedures for
ALGOL 68.

The production rules which follow often contain ampersands ("&") instead
of commas. This is to indicate that the various members must be available in
some form, but that nothing is said about their textual order, or even
whether a textual order exists. The data may legitimately reside in an
arbitrarily inscrutable data base management system and be pieced together
by the compiler.

t . t Compilation input.

compilation input :
definition module packet &

imposed module interface option &
joined module interface {for definition modules, if any,

accessed by this one} &
bole interface option {if we are inside a hole} ;

particular program &
joined module interface {for definition modules accessed

by the particular program} ;
stuffing packet &

hole interface &
joined module interface {for definition modules, if any,

accessed by the stuffing}.

AB 43p.43

source packet :
definition module packet ;
particular program ;
stuffing packet.

The programmer writes source-packets.

joined module interface :
set of module interfaces.

The phrase "set of" is used in its usual mathematical meaning.

imposed module interface :
module interface.

interface:
hole interface ;
module interface.

Interfaces are not written by the programmer, but are produced by a
compiler when a definition-module-packet, or a source-packet containing a
hole, is compiled. Interfaces may later be fed back into subsequent
compilations or recompilations to ensure compatibility. A single interface
may be used in many different compilation-inputs. The syntax and semantics
of interfaces are Implementation-dependent, but each interface must contain
the modes and indications published by the module or available to the
stuffing, as well as the "access algorithms" which enable the compiler to
generate correct code for applied-indicators in a separate compilation.

If a definition module is altered and recompiled (perhaps to improve
performance or to fix a bug), an interface from a previous compilation of
that same definition module may be "imposed" in an attempt to ensure
compatibility with the existing object code of other packets accessing that
definition module. If the compiler is able to achieve compatibility, it does
so; otherwise, it will complain and produce incompatible code and a new
interface. Clearly, if less information resides in the interface, it will be
easier to make program changes, but the resulting object code may be less
efficient.

Module-interfaces may be used in several different ways, depending on
practical aspects of the implementation.

(I) Bottom-up coding
If a program is being coded bottom-up, with each module thoroughly
debugged before the ones that access it, derived interfaces are
convenient. When a definition module is compiled, the compiler
will produce a module-interface as well as the usual object code.
This module-interface must then be fed back into the compiler when
the module's test procedures are compiled, and later, when a
program accessing the definition module is compiled. This
module-interface will be checked for compatibility with its usage
in the accessing program, thus maintaining mode security.

(2) Top-down coding
This method is based on the principle that, when programming, the
interface between program components should be defined logically
before the components are constructed. The programmer (or perhaps
his manager) will therefore start by defining an "interface
definition" for a definition module. This interface definition is
written as a definition-module-packet with skips or holes in the
proper places (assuming the compiler does not propagate the
skip-value or hole into the interface). It is compiled, the object
code is discarded, and the compiler-produced interface is
preserved. The interface is presented to the programmer when he

AB 43p.44

writes the definition module. The interface is imposed on the
compiler when it compiles the definition module, and is also
provided when it compiles the accessing program. In case of
incompatibility, the compiler will complain. The access algorithms
and other internal implementation information will be determined
for the compiler by the interface.

(3) Program libraries.
Interfaces of definition modules in public libraries must also be
provided as part of the library. It is up to the library
maintainer whether he wishes to use imposed interfaces to make
changes less painful.

If a compiler accepts "multiple separate compilations", that is, if it
accepts many compilation-inputs at one go, some mechanism (such as library
search) should be provided so that a single copy of each module-interface
will suffice for all compilations. The existence (yes, mere existence) of
multiple (and therefore independent) copies involves the risk that
interfaces may not match when separately-compiled packets are loaded and run
together.

I. 2 Holes

Holes are useful if a large existing program must be cut into pieces,
perhaps because it has grown or because it is transported to an installation
WhOSe compiler has less capacity. Unlike definition modules, holes permit a
program to retain its original structure when it is cut up.

Furthermore, the compile-time flow .of information through a hole is
exclusively from the root to the leaves of the complete parse tree. Holes
may thus be used to prevent a compiler from taking advantage of any
knowledge about the contents of a construct. This may be important if parts
of a program are to be changed independently.

The hole mechanism has been called a "top-down" method for separate
compilation; this is perhaps a misnomer in that in top-down programming the
refinements usually consist of new procedures and modules, and not of
further contents for holes in a parse tree.

The object code of a hole contains a call to its stuffing, using
operating-system external linkage conventions and using the hole-indicator
as an external symbol.

It is not necessary to start a new display level for each nested
stuffing, but it may be convenient. If this is not done, some stack
mechanisms may have difficulty determining the proper activation record size
on procedure entry. If the constituent unit of a routine-text is a hole, it
may be wise to compile calls to the procedure using the exterNal-indication
directly instead of via a dummy routine.

1.3 Module- and hole-interfaces.

This section describes some possible contents for interfaces.
implementations may of course do things differently.

module interface :
unique code & external symbol & hole description option &

mode table & definition summary.

hQle interface :
unique code & external symbol & hole description option &

Specific

AB 43p.45

mode table & set of definition extracts.

The unique code may be a possibly compactified version of the
module-interface, a hash code computed from it, a time stamp, or some other
code unique to the interface. These unique codes can be compared at linkedit
or run time to check that object codes run together were indeed compiled to
a corresponding interface. Because hash codes computed from different
interfaces might possibly be duplicates, some implementers might provide a
formal interface-registration utility-program which could perform
system-wide or library-wide synchronization to prevent inadvertent (but
highly unlikely) duplication of codes. Such a registration utility might
even be part of the compiler.

The external-symbol must be sufficient to determine the entry-point at
which execution of the stuffing or definition module is to begin.

The hole-description-option specifies into which nested sequence of
holes, if any, the packet producing the interface is to be nested. This is
necessary to check at compile-time that the necessary environment is indeed
available at the accession of a definition module, which may have been
compiled in a different nested sequence of holes.

The mode-table contains a full description of every mode required in the
definition-summary or set-of-definition-extracts. It may have undergone mode
equivalencing to reduce redundancy.

The definition-summsry contains information about all definitions
published by the definition module or hole. Its structure closely follows
the metasyntax of REVS {MRI.2.3}.

definition summary{REVS} :
set of definition groups.

definition group{REV} :
module identity{TAU} & set of definition extracts{DECSETY INKS}.

definition extract{DEC} :
mode extract{DEC} ;
operation extract{DEC} ;
priority extract{DEC} ;
identifier extract{DEC} ;
definition module extract{DEC} ;
invocation extract{INK}.

mode extract :
mode marker & mode indication & mode & mdextra.

operation extract :
operation marker & operator & mode & mdextra.

priority extract :
priority marker & operator & integer priority & mdextra.

identifier extract :
identifier marker & identifier & mode & mdextra.

definition module extract{MOD} :
definition module marker & definition module indication{TAB} &

definition summary{REVS} & mdextra.

invocation extract{INK} :
module identity{TAU}.

AB 43p.46

mdextra :
extra machine-dependent information.

The extracts are sufficient to enable reasonable object code to be
generated to access the publications of a definition module without any
further information in the mdextra, since a compiler can use a canonical
algorithm to determine the access algorithms for the published indicators.
Hole-interfaces, however, will likely be far more complicated, and may
require extra machine-dependent information to be recorded in the mdextras,
such as display-nesting and displacements for the various indicators.
Extracts should be kept as nonspecific as is compatible with efficiency,
because every datum in the interface makes compatible compilation of a new
version of a packet more difficult. The indicators published by definition
modules can more easily be forced into a canonical format that depends only
upon the DECs than can the indicators from a hole-interface.

If optimization of object-time code is more important than program
flexibility, the compiler can place further implementation-dependent
information into the mdextras. It may, for example, include the values of
known constant indicators, side effect information about procedures, or even
a partially-compiled version of the source code for routines it may wish to
compile in-line.

2 Implementation of definition modules.

2.1 Notation

The text of a definition module M may begin with a Joined-module-call.
Each module-call of the Joined-module-call will be called a "requirement" of
M, and M is said to "require" the corresponding definition modules.

2.2 General strategy.

A definition module can be implemented like a procedure. When it is
invoked, it accesses any definition modules it itself requires and allocates
an activation record on the stack just as a procedure would, and then
executes its prelude. It then returns to its invoker, passing the address of
its activation record to the invoker without freeing its local storage. The
invoker can find the published indicators within the activation record, and
when the time comes to revoke the definition module, the postlude is
elaborated. Only afterward is the stack frame for the definition module
released. Slight variations on this scheme are possible. For example, if the
invoker knows the necessary size, the definition module's activation record
can be allocated within that of the invoker. (This optimization is possible
with nonrecursive procedures as well.)

Section 2.3 describes the run-time activity necessary for implementation
in further detail. Section 2.4 describes how definition modules can be
fitted into existing ALGOL 68 parsing techniques.

2.3 Implementation of sharing

There are several methods of implementing sharing, that is, of deciding
whether a module-call actually requires a definition module to be executed,
or whether it merely accesses a former invocation. It can be done completely
at compile-time, it can be done completely at run time, and mixtures of
these two methods are also possible. The compile-time methods are simpler,

AB 43p.47

but the run-tlme methods are more flexible. The run-time methods are
recommended during program development, since otherwise, as we shall see,
internal changes in a definition module may cause much accessing code to be
recompiled even if it is not changed.

Section 2.3.1 presents a possible strategy for implementing definition
modules, on the assumption that all sharing decisions are made at compile
time. After that, in section 2.3.2, the necessary modifications are
described for doing this at run time.

2.3.1 Compile-time sharing

This method is possible if it is known at compile-time whether each
module-call involves an actual invocation or merely accesses some previous
invocation. This information is available if:

(I) the definition module in question is part of the same
compilation-packet as its module-calls(s), and no possibility exists
for any unknown accessions from separate compilations, or

(2) the compiler always places all the INKS in the interface-packet of a
definition module.

Under these assumptions, when a compiler comes to compile a module-call of a
definition module M, it first tests whether the NEST includes an INK from
another module-call of the same module. If so, no actual invocation is done,
and in the closed-clause or definition module which uses the accession, code
is generated to refer to the activation record from the older invocation
instead.

If the accession involves an actual invocation, the compiler first checks
whether M has any requirements. If so, each of these other definition
modules is first accessed. This is a recursive process, involving the entire
mechanism of NEST searches, accessing further requirements, etc. Afterward,
M is called, with the pointers to the activation records of the requirements
as parameters.

The entry-point used for calling M is the beginning of its prelude. The
return address is the beginning of the code that may use the publications of
the invocation; in the case of a joined-module-call this will be the next
module-call on the list, if any.

Upon entry, M first establishes an activation record for its own use. If
the size of this activation record is known by the invoker, the invoker can
have allocated it as part of its own activation record and can have passed
the address of the activation record to M as parameter.

The prelude of M is then elaborated. Within M, and within any procedures
within M, local and global variables are obtained via a normal display or
static chain mechanism starting from the new activation record.

At the end of the prelude, M returns, without freeing its activation
record. If M allocated its own activation record, it passes the activation
record pointer back to the invoker. The code which uses the publications of
M is then executed. The publications of M can be reached by displacements
from the activation record pointer. If the activation record was part of the
invoker's activation record, different displacements from the start of the
invoker's own activation record can be computed at compile time and used
instead.

When its time comes, M is revoked by calling its postlude, if any,
providing it with the address of the activation record of M in some way. The

postlude is elaborated, and returns, again without freeing the activation
record of M.

AB 43p.48

Back at the invoker, the definition modules invoked as requirements of M
are also revoked. When all the definition modules involved in the
access-clause have been duly revoked, the activation records can all be
freed by reducing the stack pointer.

If labels were to be permitted in postludes (they are not, but an
implementer might wish to implement the stop from the standard-postlude in
this way), it might be possible for the prelude to go to the postlude
directly instead of waiting for an honest revocation. To avoid trouble, an
extra return address would have to be provided when the prelude is called to
enable the postlude to return properly. This return address would be that
norL~ally provided when the postlude is called. It is to prevent this and
other worse obscurities that labels cannot be declared in postludes.

A problem with the above method is that it makes the interfaces for
separate compilation unduly restrictive. It becomes difficult, for example,
to restructure a large library by organizing its internal procedures into
different combinations of definition modules, without requiring massive
recompilation of all user code. These problems can be obviated with a
suitably clever dedicated linkage editor, but the implementer may not have
this freedom.

2.3.2 Run-time sharing

If the above method is not suitable, run-time analysis can be performed
for making sharing decisions. These methods do not have the execution
efficiency of the compile-time methods, but may have other advantages. In
the absence of a special ALGOL 68 linkage editor, the run-time mechanisms
may indeed be necessary during program development to retain a modicum of
flexibility. They are efficient if definition modules are only rarely
accessed. This will hold if definition modules are used mainly for
establishing the large-scale structure of the program, and procedure calling
is used for normal traffic.

Existing accessions are recorded in an in-core data base at run time.
Each accession of some definition module M causes an "activator" to be
constructed and placed into the data base. This activator is made to point
to a linked list of the activators for the definition modules required by M.
These other activators are placed on the list one at a time, as their
definition modules are accessed. These activators point to further linked
lists. The activators are thus linked together into a tree structure which
mimics the INKS {MR3.6.1}. The roots of these activator trees are linked
according to the syntactic nesting of activations within the program, from
the inside outwards, parallel to the static link. We give the links the
following names: the linked lists are linked by the 'next' link, and the
sublists are pointed out by the 'sub' llnk.

An "activator" is thus a structure with fields:
- defmod: the definition module, as an entry-point-environment pair,
- actrec: a pointer to an activation record containing the publications

o f the definition module,
- revoker: the address of the postlude,
- sub: the address of another activator (which starts a sublist), and
- next: the address of another activator (in the same linked list).

A module-text FO0 is accessed as follows:
- The accessor makes a new activator FO01.
- The accessor fills in the entry point-environment pair of the definition

module FO0 being accessed into 'defmod of FO01'.

AB 43p.49

- The accessor fills in the "next" link of FO01 to point
- if the accessor is the first module-call of the requirements of a

module-text,
- to the activator X created by the accessor's own invoker, or

- if the accessor is a second or subsequent module-call of a
joined-module-call,
- to the activator of the previous module-call of the

joined-module-call, or
- if the accessor is the first module-call of an access-clause C,

- to the "principal" activator of the smallest access-clause or
module-text containing C, or nil if there is none.

- This other activator can be found by the same sort of addressing
formula as is used for ordinary variables; it is as if each new
module-call declared some special indicator and the statically
most local definition of the special indicator were always used.

- Then the accessor Jumps to a service routine. The service routine
receives as parameters

- a reference to the activator FO01, and
- two labels:

after prelude:
pointing to the controlled-clause of the access-clause (or
its analogue for the revelation of a definition module),

after postlude:
pointing to the code to be executed after the postlude has
been executed. For the first module-call in the
joined-module-call of the access-clause, this will be the
address of the code to be executed after the access-clause
or module-text. For a second or subsequent module-call of a
joined-module-call, this will be the address of an indirect
jump to the revoker (see below) of the previous module-call;
this revoker is the postlude address of the previous
module-call.

- The service routine searches the tree of activators rooted at FO01 with
branches 'next' and 'sub' to determine whether there is already another
activation of the definition module FO0 in the tree.

- I f so,
- the 'revoker of FO01' (which contains the address of the postlude)

is set to after postlude (since no actual invocation is done, no
actual revocation will be done either).

- the 'actrec of FO01' (the activation record pointer) is filled in
with the activation record pointer of the (other) invocation, if
any, and otherwise further elaboration is undefined (in this case
the other activation record is not yet complete).

- If not, the accession is actually an invocation, and
- the object code for the module-prelude of FO0 is called, giving it

the activator FO01 as parameter.
- FO0 receives control, sets up an activation record of its own, and

accesses its requirements in order (this will have the effect that
the activators of these requirements come to be a linked list
linked by the 'next' link and pointed to by 'sub of FO01').

- When FOO's requirements have been met, FO0 makes a copy FO02 of
the activator FO01, and sets the next-pointer of the copy FO02 to
point to the principal activator of the smallest access-clause or
module-text containing FO0 (or nil if there is none). This copied
activator FO02 is termed the "principal" activator of FO0, and is
used in its prelude's and postlude's own private module-calls.
FO02 is necessary because the prelude and postlude are in a
different NEST from the invoker.

- When elaboration reaches the end of the prelude, FO0
- fills the address of the postlude into 'revoker of FO01',

AB 43P.50

- fills the address of its activation record into FOOl and FOO2,
and

- goes back to the invoker using the after prelude address
without freeing any activation records.

- If the accessor was a requirement of a definition module,
- the accessor sets 'next of FOOl' to point to the list of activators

of previous requirements of FO01 (formerly pointed to by sub of X),
and sub of X is updated to point to FOOl (this places FOOl on the
sublist of activators of requirements of X),

- Dut otherwise, if the accessor was the last module-call of the
joined-module-call of an access-clause, FOOl is termed the "principal"
activator of that access-clause.

- When the definition module is revoked by the accessor, the accessor goes
to the routine pointed to by the postlude address of the activator FOOl.
This turns out to be the address of the postlude if the definition
module was actually invoked; it is the after postlude address otherwise.

Before it finally returns, the postlude revokes the definition
modules that FOO accessed.

- When the elaboration of an access-clause is complete, the run-time stack
can be cut back to its size before the elaboration of the access-clause
started (except that the yield of the clause must be preserved). This
frees the activation records and activators of any newly-invoked
definition modules without damaging the activation records found via
sharing.

Activation records are not freed when elaboration of a module-postlude is
complete, even if that definition module invoked other definition modules.
They are freed only when some access-clause is complete. In this way the
scopes of all activation records created by a single joined-module-call can
be the same.

Notice that a jump which Jumps out of an invocation will free the
activation record by simply popping the stack without executing the
postlude. This is consistent with the behaviour of jumps elsewhere.

A "redundant" activator is one which did not cause a new invocation, but
simply found an old activation record. If the chain of activators becomes
too long, it can be shortened by linking around redundant activators instead
of through them.

If any other active activator of a definition module is statically known
at the point of activation, that activator can be used instead of repeating
any accession overhead.

2.4 Outline of parsing algorithm.

2.4.1 Description

The following processes must be present in some form in an ALGOL 63
compiler.

-I- Distinguishing mode, operation, and priority declarations and
determining the ranges in which they hold sway, and building up a
definition dictionary containing this information.

-2- Determining whether each applied bold-TAG-symbol is an applied mode,
operation, and/or priority indication.

-3- Distinguishing all declarations.
-4- Either from the information from -I- or -3-, constructing a mode

table.

AB 43P.51

-5- Mode equivalencing
-6- Identifyingthe defining occurrences for all applied indicators.

These processes need not be distinct. Some can be combined easily; others
can be combined only if one requires declaration before use. Processes -2-
and -3- are often carried out concurrently with context-free parsing. It is
at this time that the definitive definition dictionary can be built. It
resembles the earlier definition dictionary, but identifier definitions are
included as well.

Definition modules are included in this process as follows:
-I- Definition module definitions and accessions are distinguished and

entered into the definition dictionary too during process -I-. To
each definition module declaration entry, the compiler must attach
the set of definitions the definition module itself publishes and the
module-indications it publicly accesses. To save space at
compile-time, this may be combined with the set of definitions
available within the definition module's own range, but a bit must be
added to indicate whether each definition or module-call is public.
Identifier declarations are not collected, since it is necessary to
distinguish mode indications from operators in order to distinguish
their declarations.

-2- In process -2-, the applied indications may now turn out to be module
indications. Upon range entry, module-calls are identified. When an
applied-module-indication has been identified, extra definition
entries are added to the definition dictionary for the new range, one
for each published definition in the accessed definition module.
These extra definition dictionary entries refer to the module-call
they arise from. The extra mode, operation, priority, and definition
module definitions are thus made available for identification during
processing of the range. This second phase is probably the proper
moment to perform a library search through the compilation data base
for modules which are accessed but not declared by the programmer.

-4- The preliminary mode table can be built only when module-indications
have been identified. It must therefore use information from process
-3- instead of -I-.

-5- Mode equivalencing occurs as usual.
-6- Coercion and identification occur as usual, too, except that the

extra NEST entries created by accessions must also be processed.

2.4.2 Example

Consider the following example:
BEGIN #ci# LOC INT b;

MODULE B = DEF #c2# PUB MODE A = REAL FED;
BEGIN #c3#

BEGIN #c4#
b := 2;
ACCESS #c5# B

(#c6# b := 2; A b; SKIP)
END;
MODULE B =

DEF #c7#
PUB OP A = (#c8# INT i)VOID: SKIP

FED;
SKIP

END
END

In phase -I-, the corrals are identified by the occurrence of BEGIN-END,
DEF-FED, and (-) brackets and by ACCESS (a corral is a bracket-pair which

AB ~3p.52

might turn out to be a range). Several declarations are detected:
dl. MODULE B in corral ci
d2. MODE A in corral c2 (published by dl)
d3. ACCESS B in corral c5
d4. MODULE B in corral c3
d5. OP A in corral c7 (published by d4)

The identifier declarations have not yet been detected because of
uncertainty whether bold words are modes or operators. The next scan over
the program now has enough information to ide~tlfy bold words. At each
corral entry, it examines the above table to determine which bold words are
defined there.

corral ci:

MODULE B (which will publishMODE A when accessed)
corral c2 within oi:

MODE A
corral c3 within ci:

MODULE B (redefining B)(which will publish OP A when accessed)
corral c4 within c3:

nothing new
corral c5 within c4:

OP A (from ACCESS B)
corral c6 within c5:

nothing new
corral c7 within c3:

OP A
corral c8 within c7:

nothing new

Because it is now known which operators and modes are declared where,
process -3- can now determine which identifiers are declared for later
processes to use:

corral ci declares LOC INT b.
corral c6 does not declare A b, because A is an operator there.
corral c7 declares INT i.

Process -3- can still be performed concurrently with process -2-.

The rest of identification and coercion can proceed as usual.

2.5 Avoiding loading of procedures.

If a definition module is used as a library, it may be necessary to avoid
loading object code for routines that are not used by the user. Although
mechanisms for doing this are inherently implementation-dependent, most
loaders have library search facilities for loading only those
separately-compiled object files that have been referred to (some loaders
can even delete unreferenced fragments of code within a single object file).
On such a linking loader, we can use the following mechanism. The body of
the routine of a declaration can be a hole:

PROC p = (REAL a, b) REAL: HOLE "foo"
It is possible to record this external name "foo" in the interface. An
external reference need be present in object code only

- if the procedure is called, or
- if a routine-value is actually required (perhaps to assign it to a
procedure variable).

The library search of the linking loader can then be used to ensure that the
object code for the procedure, which is compiled separately, is loaded only
if needed. It is possible to avoid uslnK holes for this if the compiler is
willing to take over program library management completely instead of Just
producing object code files to be placed into a library by an independent

AB 43P.53

utility. Of course, if the operating system has a half-decent linking loader
(most do not), or if the ALGOL 68 implementer provides his own, the above
techniques should be unnecessary.

2.6 A use for the escape character.

If it is desired to perform many separate compilations with many
different compiler-lnputs in one input file using a single run of the
compiler, control cards may be needed to separate packets in a way that is
independent of syntax errors within the packets. It should be noticed that
the standard hardware representation does not enable an ALGOL 68 program
line to begin with a single apostrophe (except in comments or pragmats).
This may be a natural choice as control-card indicator for some
implementations. {Why do we still speak of control cards in the
telecommunications age?}

2.7 A new view of the standard prelude.

The thought might be entertained to implement the particular-program as
the stuffing of some hole in the standard-prelude. This would be unwise on
some implementations, since it would mean that all ALGOL 68 programs would
get the same external entry-point name. It may be better to implement the
standard-prelude as a collection of definition modules implicitly accessed
by all other source-packets. Of course, some kludge will then be necessary
for the stop in the standard-prelude. If the standard-prelude should
actually be written in ALGOL 68, some mechanism will also be necessary to
suppress the implicit accession of the standard prelude when it itself is
being compiled.

2.8 A tricky implementation method for strict stack machines.

A "strict stack machine" is a machine whose hardware strictly enforces a
procedure-stack memory hierarchy of the style of ALGOL 60. Strict stack
machines are difficult to use with unusual control structures because they
impose the wrong structure on the program, but definition modules can still
be squeezed in.

A definition module can be viewed as a procedure M which accepts as
arguments

- an activator A, and
- a procedure P.

It checks whether to make a new invocation, and
- if so, makes a copy of the activator, elaborates the prelude, and

fills in appropriate activators, as usual,
- and otherwise, digs up the old invocation.

It then calls P, giving it as parameters
- each published indicator, and
- a procedure Q, which will elaborate the postlude when called.

When P returns, M immediately returns.

An access-clause sets up an activator, and then calls the definition
module, giving it as parameters:

- the activator A,
- a procedure P whose body is the ENCLOSED-clause of the access-clause

and which accepts the defined-indicators and the postlude procedure 0
as parameters.

For access-clauses with more than one module-call, all the postludes must
be called before the ENCLOSED-clause returns.

AB 43p.54

~43.4.1 MABEL: A Be$inner's Progran~ning Languase.

P.R. King, G. Cormack, G. Dueck, R. Jung, G. Kusner, J. Melnyk

(Department of Computer Science, University of Manitoba,

Winnipeg, Manitoba R3T 2N2, Canada)

ABSTRACT

This paper presents a prel~m~nary version of an introductory programming

language. The design of MABEL is far from frozen, and many of the

decisions taken are, at best, tentative. Our hope in presenting the

language at this stage is to obtain input from a wider source. Hence

we earnestly solicit constructive cricitism, and ask readers to

accept the current document in this spirit.

i. INTRODUCTION

MABEL (MAnitoba BEginner's Language) is a programming language

for people wS~ have never programmed before. It is a simple, general-

purpose language. Hopefully, this does not imply that with MABEL one

can only do simple things. Rather, MABEL is intended to provide a

simple introduction to the art of programming by assisting the new-

comer in the design of sequential algorithms. MABEL is designed to

be simple to teach and to use.

The designers received suggestions from a variety of sources,

both within the University of Manitoba, from students and instruc-

tors alike, and from a number of high school instructors within the

Winnipeg School System who were asked to identify areas of difficulty

encountered both by themselves and by their students. Each member of

the group had a "pet" language (PASCAL, COBOL, ALGOL W, ALGOL 68,

PL/i and SNOBOL), features of which were advanced by its proponent

and avidly attacked by others. We also listened (though frequently
r

pretending otherwise) to the comments of colleagues outside the group

as features on which we sought opinion were surreptitiously leaked.

AB 43p.55

Existing beginning languages, such as B ° and the Toronto SP/k system,

were given careful attention.

From this diversity of advice, sometimes helpful but often im-

possible or derisory, the criteria of §2 were established. This list

became our bible, sacrosanct and inviolable, by virtue of which all

design decisions were taken and to which all disputes were referred.

The majority of the time spent in actual design was spent in

taking three basic decisions, namely the primitive types, the data

structuring facilities and the parameter mechanism. These decisions

and their rationale will be discussed in §3. Once they had been taken,

most of the remainder of the design followed relatively rapidly and

easily. There was some hectic infighting over the form of the

repetitive construct, but the bloodshed was minimal compared to that

occasioned by discussions over the primitive types, for example. The

remainder of MABEL, after the three basic decisions, will be dis-

cussed in §4.

Personal prejudice began to rear its ugly head when deciding upon

the concrete syntax, and the current proposals may suffer in that re-

gard as a result of the occasional compromise decision. Some sample

programs appear as an appendix, and a MABEL syntax chart, ~ la Watt, Sintzoff

and Peck, is appended.

2. DESIGN CRITERIA FOR MABEL

The objective of MABEL is to provide as smooth an introduction as

possible to the esoteric art of programming. Whether or not the be-

ginner will graduate from his lowly state, and what happens when he

does, is not deemed of any great relevance in determining how to effect

such an introduction. If MABEL is a good introduction to more com-

plex languages we would regard this as a bonus rather than a result

of design.

AB 43p. 56

Although nine criteria are explicitly discussed, several points

not given in the list were considered, but ultimately excluded from

the design. These included whether MABEL should provide an introduc-

tion to machine architecture, whether MABEL should be extenslble and

whether MABEL should define such ton-elementary but potentially

simple) features as program modules and linkage to other languages.

Such features are now being considered in the context of a systems

implementation language being designed as a MABEL superset.

We first consider five "positive" criteria: those which were

of major importance in the design of MABEL.

(1) Simplicity. The beginner must not be confused by a

large number of unorthogonal features. There must

be no discrepancies between the meaning of constructs

when they appear in different situations or in the

ways in which they may be used. Thus, the distinc-

tion between <statement> and <simple statement> in

ALGOL W is not simple; the ALGOL 68 iteratlve state-

ment is far from simple both because one requires

so much ~nformatlon before it can be used even for

simple applications, and because two applications,

such as

FOR i TO n DO read(all]) OD

and

WHILE REAL x; readE) ; x>O DO SKIP OD

have vastly different forms and purposes~ the

use of pointers and associated dereferenclng

and aliaslng is very far from simple.

(li) Readability. The reader should find MABEL

programs relatively self-documentlng and self-

werlfying. These requirements impinge on design

at both the abstract and concrete levels.

(iii)

(iv)

MABEL must be surprise free, conform wherever

possible to accepted mathemetical meaning

(5/3 is the same as 5.0/3.0) and adhere to

the precepts of structured programming.

Teachability. No feature was added to MABEL

until one had demonstrated a simple means of

teaching it to beginners. The language

should be teachable in a "continuous" fashion,

by incorporating features which can be exempli-

fied and assimilated in small "upwards-com-

patible" stages, rather than features which

require a lot of detailed information before

they can be put to simple use.

Introduction to design of algorithms. The

beginning programmer is habitually faced with

two problems; firstly, to design a sequential

algorithm for the problem at hand, which is

rarely in sequential form, and secondly, to

cast this algorithm into the form required by

the particular programming language be/rig used,

MABEL has been designed to assist the user in

the first of these: all else is of subsidiary

importance, and one will observe that MABEL

lacks certain "standard" language features

since they do not contribute directly to this

end.

AB 43p.57

(v) Versatility. Many students have a low opinion

of their introductory language as a direct re-

sult of disappointment in the applicative

examples with which the "power" of the language

AB 43p.58

was illustrated. One wonders t o what extent

such samples are chosen simply because the

language in question is Just so restricted.

MABEL is a general-purpose language and, as

the examples in the appendix show, has the power to be

used for "real" problems. We hope that MABEL

will cater, to some extent at least, to the

e.x-beginner who nonetheless wishes to con-

tinue using MABEL because he likes it.

Two further criteria were deemed of somewhat less importance:

(vi~ Small compiler. It is quite probable that a

coum~on environment for a language like MABEL

will be m~ni-computers. Thus the MABEL com-

piler must be of modest sizes and this should

be reflected in the language design.

(vii) Simple compilation. It is highly desirable

that MABEL be 1-pass. Equally, it must be

easy to associate clear, meaningful diag-

nostics with both compile-time and run-

time errors. Our experience is that these

latter questions are as much matters of

language design as of compiler design.

Two final criteria were considered to be of rather minimal

importance to the design of MABEL:

(viii) Introduction to progr~Ing languages. "And

visit the si.8 of the fathers upon

children unto the third and fourth genera-

tion." T h i s theology appears rampant in

programming language design (and is, we

claim, responsible for a multitude of

disastrous design decisions). It is

(ix)

not the philosophy of MABEL: we do not

accept that transition from a simple to

a more complex language is facilitlated by

incorporating bad features from the complex

language in the simple one.

Run time efficiency. Although the run time

efficiency of both time and space require-

ments are of minor importance in the de-

sign of a beginner's language, they

should not be entirely ignored if the

language is to gain any degree of accep-

tance as a viable product.

AB 43p.59

3. THREE FUNDAMENTAL DESIGN DECISIONS

i) Simple types in MABEL

MABEL has a single simple type. The programmer may define and

manipulate constants and variables of this simple type, and compose

structured types from it. In this respect, MABEL resembles SNOBOL 4,

and uses the same syntax for literals, representing them as

character sequences enclosed within ", " or ',', pairs. MABEL is not

a string processing language. Naturally, the programmer will be aware

that certain program variables are restricted to certai~ subdomains

of this one type and that certain operators make sense only in

certain subdomains, but MABEL considers such subdomains to be

entirely the programmer's responsibility rather than a static,

feature. CA clever compiler, however, might handle some of them

statically.)

In retrospect one wonders why this decision took us so long to

take; it now appears entirely natural and obvious. The reasons for

* Currently, the quotes are optional for integer
constants. This is under review.

AB 43e.60

having multiple pre-def~ned types~ in ALGOL for e~mple, appear to

be

• increased static security

increased readability, and self-documen~bility

• increased run-tlme efficiency

• ability to use generic operators

The first of these is to a large extent an implementation concern

and low on our score-card. The second is highly de'table. One

can as easily read and comprehend

P+B*Q- 3 or

A AND C OR Q<3

without consulting the declarations or knowing the types of A, B, C,

P or Q as with; any complete understanding requires detailed diction-

ary type descriptions in either case. Few beginner progrmmm ever

run in production mode; thus the third reason hardly applies. Finally,

generic operators are especially confusing to the beginner; why

should

"PQRS" < "XYZ" or 3* "XYZ"

be meaningful? If one means "comes alphabetically before" or

"replicate three times", then one should say so.

Further, multiple types add to the complexity of a language per

se, by virtue of the diverse denotations required and, most of all,

by virtue of the type conversions, both explicit and implicit. The

beginner needs no assistance in accepting that

'3' + '4.7'

is perfectly sensible and yields '7.7', whereas

'3' + 'XYZ'

is not sensible and will produce rubbish.

It is to be admitted that typing permits certain errors to be

caught earlier than can be done in a typeless language, but it is

not clear that the class of such errors is sufficiently broad to

AB 43p.61

Justify the complexity of multiple types. On the other hand the

adoption of a single type added considerably to the ease of de-

scription of transput (c.f. §4 iv) and assisted greatly in defining

the data structuring facility of MABEL, the second fundamental de-

sign decision.

(ii) Data Structures in MABEL

In order to satisfy the criterion of versatility, MABEL should

provide the powers afforded by conventional data structures, includ-

ing pointers, heap-storage management and flexible arrays. Con-

ventional arrays as in FORTRAN and ALGOL would be quite unorthogonal

with the single primitive type of MABEL. Restricting indexation to

integers is inappropriate since integer is not a predefined type,

and since strings have no inherent order, the concept of an array

as an ordered set is equally unsuitable. It was decided to replace

the conventional array by a facility such as the table concept of

SNOBOL. SNOBOL tables are one-dimensional and each item is selected

by a unique key; use of the same key accesses the same element while

use of a new key creates a new element.

Next, the possibility of multi-dimensional tables was considered.

To examine their usefulness in a beginner's language, illustrative

examples currently used for high-school and first-year students were

scrutinised. Most examples appeared highly contrived to make use of

two dimensional arrays. A typical example is the construction of a

table of student numbers and their grades according to course number.

There are usually far more courses offered than are taken by a par-

ticular student so that the table will typically be sparse; the be-

ginner is then forced to write code (to ignore the empty entries)

which is not part of the processing algorithm. What is needed is a

table keyed by student-name, with each entry a table of marks keyed

by course-name.

AB 43p. 62

From these considerations emerged the MABEL data structure as a

table with multiple sub-keys, where a key may be any expression which

yields a simple value. A multl-dimensional array would be represented

by using the same number of keys at all times. A COBOL or PL/i

structure is achieved by restricting keys to constants. By making

use of the full power of an arbitrary number,of variable keys, any

tree whatsoever may be represented as a MABEI~ STRUCTURE, without

introducing any notion whatsoever of pointers. Some examples illustra-

ting these remarks appear in the appendix; the reader might wish to

consult these before continuing.

The following formal rules serve to describe the syntax and

semantics of the MABEL STRUCTURE facility:

A A structure may have a simple value or a multiple value. Let S

be an arbitrary structure (wh/ch might, of course, be a variable or

constant or an expression or delivered by a function) and k, kl, k2, ...

arbitrary keys.

B (1) If S has a multiple value, S may be qualified thus:

S.k

to yield the corresponding (sub-) structure,

(ll) If S has a simple value then S may not be qualified.

C (i) If S has a simple value then S may he explicitly coerced to

yield that value thus:

S.

(il) If S has a multiple value, S may not be so coerced.

Thus, a reference to a sub-structure of $ is of one of the

forms

S S,k S,kl,k 2 k n

while a referenc~ to an element (simple value) in a structure is of

o n e of the forms

$. $.k S.kl,k 2 kn, .

AB 43p.63

MABEL structures also permit heap-llke memory management. Assuming

that the MABEL prelude contains a function UNIQUE , successive calls

of which produce distinct, arbitrary simple values, then the follow-

ing four groups of code contain equivalent phrases:

A, ALGOL 68:

MODE T = STRUCT (REF T llnk, INT i);
' REF T p ;

PL/i:
DECLARE 1 T BASED,

2 LINK POINTER,
2 1 FIXED BINARY;

DECLARE P POINTER;

MABEL :

STRUCTURE T;
CONSTANT LINK:"LINK";
CONSTANT I:"I";
VARIABLE P;

#FIELD OF T. name
#FIELD OF T. name
#NAME WITHIN T

B. ALGOL 68:

p : = HEAP T : = (NIL, 17)

PL/I:

ALLOCATE T SET (P);
P ÷ T.LINK = NULL;
P ÷ T.I = 17;

MABEL:

P: = UNIQUE;
T.P : = (I LINK: NULL, I:17 I)

C. ALGOL 68: llnk OF p
PL/i : P + T.LINK
MABEL : T.P.LINK.

D. ALGOL 68:
PL/l:

2qABEL:

no explicit garbage collection
DELETE P÷T ,
T.P. := UNDEFINED;

A typical declaration would be

VARIABLE UNIQUEX:
FUNCTION UNIQUE RETURNS VALUE:

UNIQUEX := UNIQUEX & 'Z';
RETURN UNIQUEX

* The MABEL prelude contains the declaration
of a constant UNDEFINED whose value is

"$$UNDEFINED". All MABEL simple variables
are initialized to that value (including
UNIQUEX used in the preceding footnote).

AB 43p.64

These ex-~ples, together with those in the appendix, illustrate

how the MABEL structure facility provides all the power deemed

necessary while maintaining its essential simplicity. It will be

remarked how central the single simple type is to its formulation.

We are grateful to Robert Dewar for pointing out the similarity be-

tween the STRUCTURE of MABEL and maps in the language SETL, although

the MABEL feature was developed quite independently and with

different goals.

(iii) The parameter mechanism in MABEL

It is essential that MABEL have a simple parameter mechanism.

Further, the beginner should not be burdened with words like VALUE,

RESULT, name, reference and their diverse and confusing effects.

MABEL therefore has a single parameter transmission mechanism: all

parameters are called by "constant", that is, by value without the

"free" local variable. Thus no formal parameter can be assigned to,

a natural and readily assimilated rule; to a mathematician, the notion

of a function changing one of its arguments is quite foreign.

A mechanism is needed for returning one or several ~alues. In

MABEL this is achieved by a RETURN statement.

Notice that structures are passed in the same manner, (The

specification of a function includes the specification of each para-

meter as a structure, function or s~mple value, the latter belng

the default, as well as the specification of the value(s) returned).

Since copying of structured values is only necessary when the actual

parameter is used non-locally in the procedure body and as6igned to,

and such instances can be easily detected statically, the mechanism

is not inefficient. One can optlmlse further by only copying the

entries in the structure which are changed ~as is done with multlple

values in the ALGOL 68S compiler.

AB 43p.65

A function or procedure is quite permissible as a parameter; we

have endeavoured to make it clear from the syntax that it is the

function which is passed and not the value yielded by a call.

4. OTHER MABEL CONSTRUCTS

i) Control structures.

MABEL is range-structured, a new range and scope being defined by

either a block or a function ~rocedure) body.

MABEL has a single conditional construct which, following the

philosophy alluded to in §2 ~/ll) may be introduced incrementally

without confusing the beginner. A simple conditional would be

IF A
IS B THEN statement

which may be supplemented by an else part:

IF A

IS B THEN statement 1

ELSE statement 2

Both statement 1 and statement 2 may comprise a sequence of statements

(in which case, each statement in the sequence will be indented;

c.f. §4 (v)).

The conditional may be further extended:

IF A

IS B THEN statement 1

IS C THEN statement 2

IS DIE THEN statement 3

ISNT FIGIH THEN statement 4

ELSE statement n+l

A is compared with B,C,D,E,F, etc. consecutively until a match is

encountered; in the case of IS, the corresponding statement is

executed, while in the case of ISNT attention is turned to the next

comparison if there is one.

AB 43p•66

There appears to be no problem in teaching this construct. We

are encouraged to believe that it is highly readable by virtue of

supportive evidence from a series of experiments in which a sequence

of examples was presented to a number of non-programmers~ none of

whom had any difficulty in describing the flow of control•

MABEL has two repetitive constructs. The form of the first is

FOR id INDEXING structure DO

statement-list

where the statement-list will probably involve structure.id. This

permits indexing over an entire structure, and is somewhat similar

to its counterpart in B , although MABEL has no range concept.
o

This construct is useful but limited• For example, FOR cannot

imply an order in which the elements of the structure are accessed.

MABEL therefore provides a second, completely general repetition

facility, which permits both counting loops and recurslve loops• The

simplest form is

REPEAT

The elaboration consists in replacing REPEAT by a copy of the block

in which it occurs. (Notice that REPEAT is not equivalent to a GOTO.)

At the head of the block a number of varlables may be initlalised

and they may be updated by REPEAT

BEGIN WITH I; ~ 1

0

IF I ISNT i0 THEN REPEAT WITH I+i

END

Again, this powerful feature is easy to teach. Onets first demonstra-

tion program is usually

AB 43p.67

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z, X, Y;

END

The bright student in the front row usually objects at this point that

the program only handles one set of data, and will ask how one may

"repeat the process". Upon seeing the program

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z,X,Y;

REPEAT

END

the same bright student may press his luck, object that the loop is

infinite and wonder how one may "put a limit on the number of times

it repeats". (If one does not have a bright student, plant an

accomplice.) At this stage, one introduces a slmple WITH and con-

ditional. Later on one may examine the effect of instructions between

REPEAT and END.

Perhaps one should re-emphasize that MABEL is principally de-

signed to provide an introduction to the formulation of algorithms,

a wide class of which are recursive. It thus seems entirely

appropriate to include a recursive control structure.

These are currently the only loops in MABEL. A possible draw-

back is that loops analogous to

FOR i TO UPB a - i DO ... OD

must be written using REPEAT. From a number of examples the de-

signers feel that this is not a serious drawback; we would not be

AB 43p.68

averse to including a further iterative construct but a satisfactory

one has still to be found.

(ii) Subroutines, calls and formulae.

The return statement of a function (the last statement in the

function body) may return several values:

RETURN I, J, (l+J), ARRAY.I.J.

Coupled with this, MABEL permits parallel assignations as in

I, J := 3, 4~

A, B := B, A;

X,Y,Z:= A,B MULT C,D;

The third of these may not be entirely clear, Many languages

distinguish between operators and functions. The language provides

both, but the progr~T,,~r (usually) may only define functions. This

implies that formulae involving user-defined operations must be

written in Polish notation, which is confusing to both the programmer

and reader.

MABEL makes no distinction between an operator and a function. A

function in MABEL has an arbitrary number of left and right parameters

and returns an arbitrary n-mher of results. A function may have no

parameters or zero left parameters, but we feel this latter will occur

less frequently than might be presupposed. Not only does this afford

a natural way to write functions and calls, but is an excellent aide-

memoire. One can more easily remember the specifications of the

substring function, for example, if one writes

A SUBSTR l,J

rather than

SUBSTR (A,I,J)

Thus, MABEL function calls are simply an extension of the familiar

notation

X+Y

AB 43p.69

The possible syntactic ambiguity in, for example

.... := X PLUS Y,Z

is easily resolved by parenthesising calls in a list, as in

A SUBSTR (I + J), (MAX K,J)

The introduction of user~defined infix operators raises the question

of how operator priorities shall be handled. The possibilities appear

to be

no priorities, which would require that formulae

would have to be completely parenthesized

• integer priorities, as in ALGOL 68

• a small number (say 4) of priority levels, the priority

of a new operator being defined by something llke

PRIORITY ADD LIKE ÷

• left-to-rlght (or similar) evaluation , optionally

combined with any of the first three•

Of these possibilities, the second appears the least satisfactory;

programmers in general and beginners especially remember relative

rather than absolute priorities• The third has attractions, but re-

quires a new construct, requires that a user assign a priority even if

he does not wish to for a particular operation, and implies the intro-

duction of somewhat arbitrary decisions; one could argue for days

about the relative priorities of things like SUBSTR and &

(concatenate), for example. To avoid such arbitrariness MABEL'

currently uses the first alternative and ignores the fourth, but

this is somewhat tentative.

As remarked previously, a function (or procedure) specification

involves specification of the parameters and values returned; this

is naturally true for function parameters, which are specified using

a "model" as in

FUNCTION FUNCTION F SIMPSON A,B

MODEL F X RETURNS VALUE;

VARIABLE S, H, N;

RETURN (H * (((F A) + (F B)) +S))

AB 43p.70

RETURNS VALUE:

/3

If F were to have a function or procedure parameter, it too would have

a model.

(iii) Declarations and constants

All variables must be dec].ared. All declarations must appear

at the head of a block on a function (procedure) body. There is no

initialisation of variables within declarations.

These restrictions, if indeed one considers them restrictions,

are made for pedagogical reasons, although they also assist in one-

pass compilation. Consider the examples:

BEGIN BEGIN

VARIABLE C; VARIABLE C;

C:= 7 ; C: = 8;

* t

* •

BEGIN BEGIN

VARIABLE D:=C; C: = 7;

VARIABLE C:= 5; VARIABLE C|

• I

These are both grossly unreadable and will cause intolerable surprises

to the newcomer (if not the expert tool).

Compile time constants are permitted as in

CONSTA/~T PI:'3.14159', PR!MES~ (l 'I';2, '2'~ 3, '3': 5, '4': 7[)

AB 43p.71

but the following is not permitted

CONSTANT NEWPI: '4'*~ARCTAN i);

It might be hard to explain to a beginner why NEWPI should be a

"constant" and would be hard to prohibit examples llke

CONSTANT A:B, B:A;

in a consistent manner.

iv) Transput

MABEL provides two sets of transput primitives. The first is

intended for use by rank beginners, and is an extremely simple

stream transput facility. The beginner will~ at a very early stage,

appreciate the meaning of

X, Y, Z : = 'i', '2', '3';

and shortly thereafter will learn that

GET X, Y, Z

where the data contains the list of literals

'i', '2', '3' (or 'i' '2' '3')

means precisely the same thing. The corresponding output construct

is typified by

PUT (X + 'i'),(Y + 'I'),(Z + 'i');

which produces

'2' '3' '4'

on the printed page. The remaining primitive he may use is

NEWLINE

This elementary format-free transput is easy to learn but is

insufficient for all but the most basic purposes. MABEL also pro-

vides two simple record transput primitives:

READ var, var, var, ..., var;

WRITE exprn, exprn, ..., exprn;

which may optionally specify a file-name:

READ A,B,C FROM STANDIN;

WRITE (A+B), (C+D) TO STANDBACK;

AB 43p. 72

Each variable is read from and expression written to a new record in

the appropriate file, which is STANDIN or STANDOUT (which are also

accessed by GET and PUT) if no file name is specified. MABEL takes

the view that the beginning programmer should be made aware that

transput operations are essentially string transfers; hence, it is

the programmer's responsibility to manipulate the corresponding

strings as he wishes (although MABEL will provide various functions

to assist him).

It will be observed that all these transput operations involve

constructs rather than function calls. We consider the additional

seven reserved words introduced (for a total of 32) far preferable

to introducing "pseudo" functions with a variable number of para-

meters, as is the case in ALGOL W.

(v) Operations and other oddments.

The MABEL "system" comprises three components: the kernel, the

prelude and libraries.

The kernel incorporates all the MABEL constructs, including a

set of "primitives" which will rarely be used by programmers but

which are complete in that all operations may be defined in terms of

them as described in the next paragraph. The primitives currently

used are

SPLIT char FROM string

APPEND string TO string

The kernel includes some global constraints, such as file names but

does not include any function or procedure definitions.

In the prelude are defined a host of MABEL functions. These in-

clude arithmetic operations such as

+, -, X, /, **, <, > etc., DIV, MOD, FLOOR etc.

string operations such as

AB 43p. 73

& { concatenate}, SUBSTR { "ABCD" SUBSTR 0,2 yields "AB"},

CB, CA { comes alphabetically before and after}, REPLACE,

CONTAINS, REVERSE

and the (non-McCarthy) logical operations

AND, OR, NOT, XOR

The prelude may be written entirely in terms of the kernel, and this

will be incorporated in the definition of MABEL. Hopefully this

definition of the prelude will be correct and an aid to portability;

it should be directly usable by an implementer with possible loss of

efficiency being the only penalty•

A number of standard libraries will be included in the MABEL

definition. Others may be added at installations•

There are two ways to include comments in MABEL programs•

• All text from # to the end of the current input

record is treated as comment.

• Comments may be included within the brackets

(*, *).

In the latter case the brackets may be nested and will be matched by

the compiler, thus permitting sections of program including comments

to be "comm~_nted out" for testing purpose~.

MABEL currently uses a 56 character set consisting of

letters A-Z

• digits 0- 9

• operators +- * / ~ = < >

• punctuation () ' " ; : . , # space

ASCII has currently been adopted as the collating sequence. Identi-

fiers are (arbitrarily long) sequences of letters and digits starting

with a letter, while function symbols are identifiers or sequences

of operators. (Special symbols are never sequences of operators.)

We emphasize that generic operators are not permitted; operator

(function) identification

identifiers.

AB 43p.74

follows precisely the s.m~ rules as for

MABEL encourages good program layout. When a group of statements

is to form a single compound statement and there are no explicit

delimiters, these statements must be indented,at the same level.

This applles in three situations: following THEN, following ELSE

and following DO. (All other compound statements have delimlters

such as BEGIN...END, PROCEDURE FINISH and FUNCTION RETURN.)

We feel that good program layout should be mandatory rather than

optional; indentation is a powerful, all too frequently ignored

control structure.

5. MABEL Implementations

A compiler for the current version of ~L~BEL has been written at

the University of Manitoba. It could be made available to anybody

willing to experiment with the language. Its brief specifications

are as follows:

Computer:

Source
Language:

Compiler
Size:

Space
Requirements:

Parser:

Object
Code:

IKM 370 under OS or VS

200 K

Compiler: 256 K
Run time: 4K + Object Code + Memory area (run-

time parameter)

LR(1) with local error correction

370 Object Code

Object code is combined with 4K of run-time
routines. Run time includes a garbage
collector and error traceback.

AB 43p.75

ACKNOWLEDGEMENT

The first-named author wishes to thank h~s grade 2 daughter for point-

ing out that 10-3+2 is equal to 5.

APPENDIX: ILLUSTRATIVE EXAMPLES

Three examples are given, all of which have run successfully

under the current MABEL compiler. The first is a simple prime

seive program; the second evaluates simple arithmetic expressions

while the third, a family tree program, is intended to illustrate

the power and potential of the MABEL STRUCTURE facility. Two sets

of output appear for the third program; the second set illustrates

the run time dump produced in the event of a run time error (here

activated by execution of the statement STOP).

llJ

UJ

+<

m

~ ~ .z •
,. °oi- UJ

- I J , - o-UJ ~UJ

• II ~ k,

I,U 2: ~ H o,.
- D I- ^

uJ.-,-. < Z

. °, -. ~t

• + + , o , o + +

,, ILl ~ II
> U . . . " •

Z ~ ~ ~ Z (nO --IIJ "1 '~

<1.,. I£.1 I-,- , X
I~ ~ ~II,.I l-i.,. O~IJ.Jl.,, --U.I <

+ o ~ Z Z ~ , . l Z] l cn X
-- ~ < < l,.,.m<

~ I-1.- u < l - Z t k II.

. ~ + +m

u ~ ~ .+m m+ m +~. eo, o - m m ~.m,a~. + + o - m

Z ~ w

+ ~ ~ ®o +<o +o++m+<++o
0 O 0 ~ G l C l + , , * , ~ , , ~ + ~ N N I N

0 ~ o o o + o ~ o o o o o o o o + o ~

AB 43p. 76

AB 43p.77

~<

>~

~ ~ ° ~ ~ "°

d -

~ Z ~

" 8 ~ ~ - ~ o~ ~ ~ ~ ~ ~ . . = . • -~ z~ z-~.

~ 0 @ " ¢ > J ~ !1 II II II Z II J ~ O , , I k = l l ~ = I1~ I l k k .,

z ~ , ~ +~ = ~ ~ ~ ; ~ o ~ > = > ~ > = ~ •
~ ~ ~ . m ~ z < . . ~ z < ~ + ~ l ~ * ~ ~ z < . z ~ ~ ~ ~ ~ j

13.

0
U

.J
L~

UJ U
ILl

N I,I,.
U UJ
UJ
O. Z

N

m m
Z Z
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 O 0 0 0 0 0 0 0 0 0 0

AB 43p. 78

LLJ

0,

<
"1

LU
U~

UJ
.J
LLI
O~

~J

Z
0

~n

LU
>

UJ
.J

O.
=[

.J
UJ

3[

I -

O. <
uJ >

~ Z
Z ~
u J ~

I=-

LU

e o

~ q

O.
Z

>
UJ

uJ
z

.J

N

< z~
• uJ

o.
-Z

Z
LUuJ

Z . - ~

Z ~

uJ

uJ

< Z

Z

0 0 0 0 0 0 0 0 0

in

~nO

~ u J

u J u
t ~

x I - -
< Z
tm<
Z ~

vow

~ Z
I - 0

0 ~

I - W
~ Z
U W

~xw
W ~

%

0 ~
÷ U O

~ 0

0

N

AB 43p. 79

0

u
UJ

~0
0
II
l -
U

0

0

tU <
Z

~ ~ °
~ 0

% 0 0
II II

• -, Z Z
l i l N

Z I,~
< I U

w 0
U . J

0
II II
In Z

< < I£.I
I.U ~ 0
. i ~ o
W U

I!

Z • ~

i i i Ol o

u ~ w

, J ~ U,.

Z Z

~ N

0 0

@ @
@ @

@ @

@ @

@ @
@ @

@ @

@ 0¢ @

0
0

m

l@

O0

Z Z

m ~

e e e@

Z

.J

~tU

W O

,-',W
J Z

DOE
OLU

~ = " ' W < L.W I , - I - - ~ . o • •
LU~O: I + ~ 0 < 1.II LU ,-, I~ +

• ° = = = tU~U..I l.IJ D ~

• - ~.... ; • < Z < l,l.I < g ~ W
0 . - ~ • O~ . . Z < Z LI.IZ I Z ~ ~ Z , , Z Z
I1.1= I . - U . I l U O - - Z J e l . - , W J W - , 0 • •
Z - ~ I I J J OU.I ~ I I J J I I , I W
N ...II.- I.- ,-~ O0 ~ ~ ~ ~ O W ~ I-- ¢0 --WbJ

O , J < 111,- ~ t.,)- ~ > -
ZD~- ~- ~-~ ~J J~ J-- J J
DZ ZZZZ< ,J ~ ~ ,-..., ~,=,

LIJ I - O~ I-- I.. I,-, I,-, (Z < < Z <

< ~ Z Z Z Z ~ 0 ~
Z<l.,. UO0 ~ 0 I£I < IJ. ~
~ 0 1 D U ~ U U U > w ~
~ Z ~ Z 0

03 >U t~

~ D

A

= 7 <
Z o o e o

A

L.I.I 8: 8~
.,.,.I

e"s

111
~ ~ Z

0 UJ LU .J
• Z Z 1-

I11 U I -" .,I = .J O.
O. Z Z I-- Z l.-

O~ 0 O. 0 & - -
UJ

I.- Z • Z o
• - . P 0 ~ ~ ~ ~ ~ Z
~JW ,- ~ W W

~ :3 ~ WJ I,- I,,u I.- o
Z Z Z I < I 0

I-- ,, I-- 1,6 ~ • - I
II II 0 .'~ ~ • 0 • I!
• , , , Z ILl I L 1.1.1 ~ ~ , ,

e e ~ ~ < ~ N o
~ - , Z Z ~ Z ~ Z Z Z ~

: Z ~ ~ ~ I-- - W . W ~- ~ Z

~ tO I .JI =J W ~-O~
Z ~ • ~ ~ ~ ~ -0 Z I-.

~ ' 0 " " @ @ • ~ t t- • ~ I1. < Z < - -

, , ~ . J . . l ~ ~ W W ~ ~ ~ ~ O. Z Z

• - J . - ~ . J W .J W ~ Z

.J ~ U~ 0'I Z W ~

~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ 0 ~

0 0 0 0 0 0 0 ~ ~ ~ ~ N ~ N N ~ M ~ ~
0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AB 43p. 80

G.

UJ
Z
N

.J

e o

tU Z

Z 0. < .J
U~ 0. .J

< • - Z
(1 0 • . ,

.J O- Q
• . ,=, Z - I

~J 0 t.- (I ~ . =

• Z J . - < ~ Z •

~ Z ~ ~ Z Z Z
~o ~ Z ~ "~" ~ ~ m

Z ~ ~ ~ ~ ~ , , • ~ ~ Z . - ~ Z . - ~ ~ - 0 ~ ~

~ X Z < Z ~ ~ ~ " ' " ~ ~ ~ ~ ~ Z ~

~ Z Z ~ 3 ~ 0 '=" ~ Z~ • ~ ~ ~ ~ ~ t ~ ~
~--~ ------~Z--~ Z~ .-o 3 ~ ~ Z~ Z Z~ ~ Z J • <

Z ~ ~ • ~ O U Z Z ~ ~ Z ~ ~ ~ J ~ ~

Z ~ Z ~ ~

X 0
0 O~

.J
tU
O0

@

0

> ~ m m

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

u~
D:

CD~
~UJ

UJU
N

xJ-"
< Z

Z :E
>-W

AB 43p.81

Z

U

d

g
Z

0 ~J

~ Z

O O Z ~

Z ~

0

0

~Z~

0

e $ e e . $ e o e o o $

ZZZZZZ

@@@@@@
Z@@@@@
0 0 0 0 0 0
U U U U U U

W

ZZ ZZ

O0 O0
ZZ ZZ

ZZ ZZ

~0 4[O

0 0

.J
UJ

ZZ

O0
ZZ

ZZ

~0~

I-I-
~0

0
0
L~

Z
~m

U

ZZ

O0
ZZ

ZZ

~tU

~0

0
0

Z

U

ZZ

O0
ZZ

ZZ

~JUJ
ZZ

~0

0

Z Z

O 0
ZZ

ZZ
D~

~tU

I,- I--
~0

0

0
0

L~
Z UJ

O.

Z
-

Z U

.J
ILl

o~Z

W

WU ~ O ~ Z
O U W

~ XW
Z Z W~

W~W W

I~ ~ Z~

~ ~ Z ~

• 3
~ o

• .~ ~ ..0

ZZ Z ZO

@~ ZJ @

AB 43p. 82

Z

U

.J
UJ

<
Q
<

3:

sm

Z
<

0
U

O O Z <

Z Z

Q ~ E ~
0
U

J Z <

Z Z Z Z Z Z ~ E < m < ~

UJ

• "~ I.U .,I U

I I,U = ~.

I I < = ~1.;.1~'.~1:
, . Z ~ l l ~ - I ~ - - - < , ,

) ~ 0 . , 0 . - < 1 0 E

3: - , ~ = m : , ~ . J : <

I : ~ U , J U L U - - Z : ~ O ~ .
~ ' " . J :E : : = l I . . . (= =

• . t U U L I . - - I I . E ~ = = I .LQ

I - = = O 0 0 0 < ~ Z

2 I~ = ,'= ,'1~ *,= I~ U

I E .-~ IJJ , , IZ l . , tIJ - . E .-.
, , L U . , ~ I ~ l Z : W , ,
= = = i - m ~ . - m t - - m ~ =

J

m
<
Z

E

U
Q

Z

~ Z

<

~ O ~ Z D

w m

• • e l

: ~ e l

Z ~

= = W

w W : : N Z
Z Z ~ m ~ 0

Z Z ~ I l Z Z Z ~

W W W W < O ~

• J J ~ Z

O 0

Z Z Z J ~ J ~ j •

Z Z Z Z ~ ~
0 0 0 0 < < < < < <
U U ~ U >) > > > >

AB 43p.84

AB43.4.2 PROPERTIES, FEASlBILITY AND USEFULNESS

OF A LANGUAGE FOR PROGRAMMING PROGRAMS

M. Sintzoff

MBLE Research Lab., Brussels

Manuscript prepared for IFIP WG 2.1, August 1978.

Foreword

At the last meeting, in December, it was suggested "That

WG 2.! investigates the properties, feasibility and usefulness of a

language helping the specification and the construction of good algo-

rithms". The aim of this highly informal note is to present half-

baked ideas on that subject, as requested by our chairman : remember

I am not working now on it, but rather on quite limited and technical

problems underlying it; this is safer and wiser for me.

Properties : the blue sky

One should be able to write programs which formalize high-

level, well-structured and successful strategies for the development

and the ~rans)formation of programs, on the basis of given specifica-

tions or preliminary programs. The primary design goal must be to

enhance and to communicate programming techniques.

Such a language must be nicely organized, consistent, simple.

The target sublanguage into which the programmed programs are to be

expressed has to be extremely clean and systematic; otherwise, there

is no hope of a disciplined working-out of programs. To quote P. Naur~

from his history of Algol 60 : we need a "scientific and philosophical

orientation towards the definition of a useful, elegant and artistic

object." The whole language should be a vehicle for teaching) commu-

nicating and formulati~ methods and techniques of programming. And

each programming program must be executable by computer.

AB 43.p85

If any, except this one, of the required properties cannot be

ensured, then the design must be dropped.

Feasibility : the doubt

Sure enough, we are not facing the problems of long-range arti-

ficial intelligence : the goal is to express the existing knowledge of

programming experts, and not to robotize them. Nevertheless, it could

well be dangerous and premature to integrate programming within pro-

grams : this could be too much, too soon. Do we know enough in problem

description, design methods and programming techniques ?

There is another difficulty : how to take into account diverse

methods and techniques, various application-areas and the expected

hardware. Again, a sensible way out is to unearth clean, logical,

mathematical archltectures : we are back to the requirement of extreme

simplicity, clar1~? and economy, i.e. ascetism.

Any elaboration on any available language, appears to be inade-

quate because none has been initially and mainly designed for expre-

ssing techniques of program development. The not-invented-here complex

should of course be avoided; but we should also remember that twenty

years have been necessary for getting if-then-else in fortran.

The feasibility problem is thus a creation problem. Illusions

are probable.

Usefulness : the wish

I~ his pamphlet "Why programming languages are obsolete",

T. Winograd writes : "Higher-level programming systems can provide the

means to understand and manipulate complex systems and components".

In fact, the mai~ axis of useful work, during the last ten years, in

the software area, has been the discovery and dissemination of methods

and techniques of programming. However, proolems do remain : suppo-

sedly constructive techniques still require much ingenuity, intuition,

intelligence or invention, behind the scenes; noncommunicating subcul-

tures coexist without mutual benefit; requirements and specifications

are not easily formulated; adequate methods are not used as well as

they should. Hence, to express design techniques in a high-level,

formal, constructive language would not be harmful : we would then have

AB 43p.86

a support for thinking, a medium of communica~ion~ and a guarantee of

realizability. There have been successful designs of good software

systems, but most often these designs remained unformulated, inacces-

sible and isolated, in a sort of unconscious realm. The design process

as such is at least as important as the final, finished product.

This app[oach would also have a beneficial side-effect on the

structure of the target programs to be produced : in the search of

basic constructs, the constraints of program design provide a better

guld~n~e than formE ~=mantic$, implementation methods vezifica~ion

rechnlques, or intuition°

Here are now a few case studies of some aspects which deserve attention.

They have been selected intuitively and too rapidly.

Functions to be pro rammed
. ,

Here is a rather haphazard collection :

- EXPLICIT implicit specs USING method 3

- REPRESENT set BY balanced trees

- APPROXIMATE TESS OF bounds BY linear relations IN proc 2

- SUBSTITUTE def 2 INTO spec 3

DEFINE info 3 AS info I WITH(OUT) info 2

- ENSURE INVARIANrE OF requirement 4 IN module 3

APPLY reductions 2 TO def]

- ENSURE TERMINATICN OF proc 2 BY variant fn 2

CREATE prog 3 FROM prog l USING arrays FOR lists

DISTRIBUTE TERMINATION IN communicating ~yst 2 USING ~ee order 3

BOW ten we organize ~he cempositlo~ or decomposition of ap~ci-

f~catlon~, theo~i~, strategies and tactics tc ha ~sed ? Mow do we

pro@Tam these functions ~ What more primitive constructs ate adequate

~o~ e~pres~.i them ?

AB 43p. 87

- P u r e expressions, as in comblnatory l o g i c without varlablea.

- E l ~ e n t a r y se t t heo ry ,

- Recurslve equa t i ons , plus cartesian product, plus pattern matching.

- Production systems,

- Predicate, or other, logic,

- Synchronized colmnunication.

• Horn clauses.

Sh)uld a unique underlying qtructure be used or not ? What applicatioD

areas must be considered ; How are they covered ?

Unification OY systems of KPIe~

Systems of rules with the structure "IF condition THEN action

or transformation" adequately model (i) expert knowledge in specific

application fielJ . (ii) concurrent programs, (ili) guarded commands

(iv~ program transformation systems. Is the integration feasiblo ?

Unifica~oion by input, ou=put

logic

accesses

data

communication

synchronization

syntax

IN

precondition

imports

parameters

receive

wait

begin

OUT

postconditlon

exports

results

send

signal

end

Logic-flow programming is thus an attractive avenue too.

Unification byapproximations

Approximation is the foundation of techniques such as weak or

abstract interpretation, or as partial evaluation.

AB 43p.B8

Types Ideal Approximation

Viewpoints Strongest,
Unfeasible

Feasible, Weaker than ideal,
stronger than nothing

assertions

requirements on
bounds, scopes,
accesses

precomputation

pattern matching

automatic proving

full check

perfect optimi-
zation

matching by
oracle

modes

sufficient static tests

partial elaboration

pattern filters

The use of this line of thought for the design of programs is

still a research problem.

Unification of definition methods

F1 (progr, initial env) = final env

F2 (progr, precondition) = postcondition

F3 (progr, data) = results

F4 (progr, data) = F42 (F41 (progr), data)

FI : mathematical semantics.

F2 : predicate transformer; abstraction of FI.

F3 : interpreter; constructive model of F].

F41 : compiler; static approximation (?) of F3.

However, even unified, these definitions remain inadequate° One

should replace the excessively detailed definitions of mathematical

functions FI by the corresponding abstract specifications. The verifi-

cation rules F2 should be replaced by construGtion functions G2 (pre-

condition, postcondition) = progr. Finally, the definition which is

closest to programming methods must be the main one, the others being

derived and auxiliary. But, what is the semantics of a programming

method ?

AB 43p.89

Why should we, and how could we, master the complexity of desi-

gning a useful language for expressing the very design of useful

programs ?

Formation, Transformation, Eternal Mind's

eternal recreation.

Goethe, Faust, Part 2

Postscrlptum, after the Jablonna meeting

During the welcoming party, I asked Dorota "How do you

program?". She answered "It is simple : I am given a problem, and I solve it".

This clearly explains why many feel the striving for a formal expression

of program construction could be ill directed and fruitless : there is no

theory of problem solving, no discipline formalizing problem solving methods.

Of course, one may then limit oneself to a tractable domain. But we know

how easily our attention can be restricted to toy properties of toy examples

in toy systems. Aren't we too incompetent?

In his Turing award lecture, J. Backus wishes that "Algebraic

transformations and proofs use the language of the programs themselves,

rather than the language of logic, which talks about programs". Yet, who

knows of a good program calculus including, a.o., a workable algebra of

concurrency? On the other hand, the use of natural language for constructing

programs does not seem quite adequate : every effective science has created

its own language in order to help thinking, communication and technical work.

Natural language has been abandoned as a means for expressing solutions to

numerical problems. Shouldn't we do the same in the case of program design

itself?

Thanks to, and in spite of, various reactions, I still feel

the following question should be investigated : how to formulate the design

AB 43p.90

structure of each program, starting from the requirements and the specifica-

tions, in the form of a well-designed, well-composed, correct and executable

program. A good algorithmic notation should be a vehicle for a good program

calculus. We should work along the vertical dimension as well as the

horizontal one :

0
T
C
U

ABSTRACTO
T
S
N
0
C

AB 43p.91

AB43.4.3 ABSTRACTOdThoushts.

Hendrik Boom, Mathematisch Centrum, 2e Boerhaavestraat, Amsterdam

Abstract

Some design aspects of a language intended for verified programs are
discussed in relation to transformatlonal programming. The data type system
of such a language can be intimately related to intuitionist logic.

Computing Reviews categories: 4.20, 4.29, 5.24.
AMS-MOS classification: 68A-30, 68A-40, 02C15.

Key words and phrases: Abstracto, transformational programming.
verification, data types, intuitionism, propositional calculus.

1. FOREWORD

In the last few years, Working Group 2.1 has started investigating the
transformational approach to programming, in which the programming process
is seen as starting with some correct program which expresses some
computation in a clear language. By applying semantics-preserving
transformations, this program is then converted to a form which can be
efficiently implemented on a conventional machine. This is not the same as
the more traditional stepwise refinement process, which operates by
continually implementing previously unimplemented features. The
transformation approach can better be viewed as analysis, translation, and
optimization than as refinement. Throughout the transformation ~rocess, the
program is expressed in an at present undefined language called 'Abstracto".
Programs in Abstracto need not be directly executable; it is envisaged that
Abstracto will contain implementable and unimplementable features, as well
as specifications and other useful things. The aim is to support the
programming process from first conception of algorithm to final expression
as executaSle code (in "Concreto"). There has also been talk of a language
"Transformo" in which to guide the transformation process. The discussions
on these points are still extremely vague.

This is a working paper presented at the WG 2.1 meeting at Jab~onna.
It is deliberately speculative, and was written to suggest ideas, not to
present conclusions of completed research. This may account for a certain
half-bakedness in the style of presentation. Minor changes have been made
to make it more accessible to the uninitiated reader.

2. OLYMPO

This paper investigates what language can be at the top of the
hierarchy. Let us call it Olympo, to make it a highest-level member of the
-o family of languages. Olympo should be designed principally to make
verification easy, and efficiency be hanged. Perhaps efficiency can be
transformed in after, but then we are speaking of Abstracto or even Concreto
instead of Olympo.

The current state of the art in formal verification techniques is at
present very dependent on automatic theorem proving. The normal approach
seems to be to probe a program with assertions much as an acupuncturist
inserts strategic pins into a patient, to look at the reaction, and to pass
the resulting verification conditions to an automatic verifier. The
verification conditions tend to be extremely complicated, probably because
attempts are made to let the assertion language mimic faithfully all the
convolutions of operational semantics.

An additional source of complexity is that the present-day formal proof

AB 43p.92

and assertions are variations of the n-th order predicate calculus for small
n. Predicate calculus was not originally constructed for the practical
verification of practical theorems. It was instead viewed as a minimal set
of axioms sufficient for the formalization of mathematics, so that the
necessary use of logic in mathematics can be precisely studied. Serious
attempts to use predicate calculus to formalize mathematics involve massive
use of abbreviation. This should be a warning. Present-day assertion
languages should be compared to machine languages, and we should seriously
attempt to raise their level. A concerted attack on this problem may yield
the same kind of progress as we have achieved in high-level languages over
the last thirty years.

3. INTEGRATED VERIFICATION

Since the advent of Structured Programming (fanfare on trumpets), there
has been a growing suspicion that the correctness proof of a p:ogram should
be constructed at the same time as its code. Much of the present work on
verification ignore this point; in particular, it is ignored in any design
for a compiler that accepts a program, generates object code, and also
generates verification conditions to be checked (or not) by a separate
verifier.

The most successful form of automatically verified assertions to date
has been strong data typing. It is extremely rare for a programmer to he
tempted to leave out the data types in a strongly-typed language because
they involve too much work, or because he can see that the program is
correct anyway. The data t~pes are an integral part of the program, and not
merely an add-on feature. The temptation to omit assertions is very strong
with other mechanical verification schemes. These are clearly add-on
techniques. We may conclude:

The assertion mechanism of Olympo should be so well-integrated into
the language that no one would think of leaving out an assertion in
the hope of getting a program ready fast.

Each programming language feature should simultaneously generate object
code and a proof. It may well be that there may be a variety of features
with the same object code but different proof rules. Each would be used in
a different situation, and be chosen to make a different application easy to

prove. For example, consider the ordinary integral for-loop:

for i from I to n do S(i) od,

where S(i) is a parameterized statement. Various axioms may be convenient
to verify programs involving such a loop:

(I) Axiom "for1"

For i in 1..n,
Let V(i) be a set of variables,
Let S(i) involve only variables in V(i)
Let P(i) be a predicate.
Let P(i) involve only variables in V(i)
Let V(i) and V(j) be disjoint for i @j
Let {true} S(i) {P(i)}

Then
{true} for i from | to n do S(i) od {FORALL i in |..n: P(i)}

(2) Axiom "for2"

for i in 0..n, let P(i) be a set of predicates.
for i in 1..n, let {P(i-])} S(i) {P(1)}.
Then {P(0)} for i from | to n do S(i) od {P(n)}

AB 43p.93

(3) etc.

It is true that axiom (I) can be derived from axiom (2). However,
axiom (I) is much easier to use than axiom (2), and is often sufficient. If
loops with different axioms were to have different syntax, verification
might be simplified for common constructions such as:

for i from I to n do A[i] := 0.0 od.

With the hint that axiom (|) suffices, this loop can be verified
(postcondltion FORALL i in 1..n A[i]=0.0) without the trouble of inventing
an induction hypothesis.

There are probably no more than 10 to 30 commonly used loop structures.
It would not be hard to include each of them in a programming language,
perhaps as part of a standard prelude. Each of the above for-loop
constructions can be considerea as a procedure call. The procedure is the
for-loop axiom, and its arguments are the pieces of program text "1", "n",
"lambda i: S(i~", and the assertions that these pieces of program have
specific properties. (Alternatively, these assertion§ may be considered to
be included in the data types. More about this later.)

4. BOUND VARIABLES IN MODES

Consider a procedure which accepts an integer i and yields an arrayof
size i. In Algol 68 we would be able to write its mode as PROC(INT)[]REAL.
But why not PROC(INT i)[I:i]REAL? This involves a bound variable in the
mode, but provides more information [3].

Bound variables within data types become more useful if one ~ermits the
parameters to be modes, and permits their modes to depend on prevlous
parameters. The traditional example is:

PROC sort = (MODE M, REF~]M arr, PROC(M,M)BOOL less) VOID:
C sort the array "arr according to the ordering "less ° C.

Such formal mode parameters have been traditionally called "modals" in WG
2.| [2).

5. DATA TYPES AS PROPOSITIONS

It is possible to use the conventional concept of data type (or mode)
as extended above to encode the intuitlonistic propositional and predicate
calculi. Propositions are represented by data types (and not by values of
some fixed data type).

A proposition P, when encoded as a data type P, can be considered as
the data type of all its proofs. A value of mode P then represents, a proof
of P. The existence of a value of such a type is equivalent with the
provability of the proposition. To make this work, it is of course
necessary to abolish facilities like SKIP and NIL, which produce fake values
of an arbitrary mode; otherwise everything would become provable.
Nontermlnating procedures must also be abolished.

The implication P => Q provides a means of converting proofs of P into
proofs of Q. We therefore encode P => Q as PROC(P)Q. A proof of P => Q is
a procedure which will turn any proof of P into a proof of Q.

We can now construct procedural proofs of tautologies such as P => ((P
=> Q) => Q). To avoid notational con~usion below, we shall use the word
PROC as in Algol 68 when we are constructing a mode, but shall write the
word LAMB in front of every routine-text. ~ => ((P => Q) => Q) is
represented by the mode PROC(P)PROC(PROC(P)Q)Q. To prove P => ((P => Q) =>

AB 43p.94

Q), we must construct a procedure of this mode, that is, a routine text
star ring

LAMB(P a)PROC(PROC(P)Q)Q : ...

This accepts "a", a proof of P, and produces a proof of (P => Q) => Q. The
"..." must be a routine text of mode PROC(PROC(P)Q)Q, so we may write

LAMB(P a)FROC(PROC(P)Q)Q :
LAMB (FROC (P)Q ab) Q : ...

But now it is easy to obtain an object of mode Q {i.e a proof of Q} by
writing ab(a) <combining the proof ab and the proof a}, thus:

LAMB (P a) PROC (PROC (P)Q)Qa:b
LAMB (PROC (P)Q ab)Q : (a).

The call ab(a) corresponds to the use of modus ponens.

It is clear that Algol 68 routine texts are not the best vehicle for
expressing proofs. Conventional proofs may even be a better notation for
some Algol 08 programs. Some combination of the two may eventually turn out
to be appropriate.

The conjunction P AND Q is represented by

MODE P AND Q ffi STRUCT(P first, Q second).

That is, to construct a proof of P AND Q one must combine the separate
proofs of P and Q. Furthermore,

MODE P OR Qffiffi UNION(P, Q),
MODE FALSE (PROC(MODE M) M),
MODE NOT P ffi (P ffi> FALSE).

With these definitions, it is possible to find procedures that prove all of
Heytlng s axioms [I] for the propositional calculus (see the appendix).

Typed universal quantification is straightforward:

MODE FORALL i:T P(1) ffi PROC(T i) P(i),

using the parameterized procedure-yield modes we have already seen. Typed
existential quantification can be done with parameterlzed unions, but we can
ao it with modals instead:

MODE THEREEXISTS i:T P(i) ffi

PROC(MODE R, FORALL i:T (P(i) ffi> R)) R.

6. IMPLICATIONS FOR PROGRAMMING LANGUAGES

The above results strongly suggest that it is not necessary to separate
the assertion language from the data type system, nor to separate the proof
language from the procedural language. It may even be undesirable, since
the possibilities that may be opened by the direct execution of proofs of
theorems are still largely unexplored.

7. FEATURES IN AND OUT OF OLYMPO

Olympo must have facilities for the free construction of programs out
of components . The components must be e x p r e s s i b l e w i t h a h igh deg ree o f
a b s t r a c t i o n in o r d e r to i n c r e a s e t h e i r a p p l i c a b i l i t y . F u r t h e r m o r e , t h e r e

AB 43p.95

must be no facilities which could lead to lurking side effects, since these
would greatly complicate verification.

Therefore:
NO

- side effects
- assignments,

variables
- GO T0s
- explicit input/output.

These restrictions may well be too severe for anything resembling normal
programming; they are introduced so that we canhave an easier problem to
solge before we start on a hard one. The solution to the easy one may show
us how to avoid the hard one entirely.

MAYBE
- heuristic choice and backtracking.

YES
- procedures accepting multiple arguments and yielding multiple results.

arbitrary typed parameters.
lots of data types.
procedures and programs as parameters.
free algebra with induction law as a primitive data type constfuctor.
well-oraering in some form (for termination)
identity declarations
promissory notes (see below).

A "promissory note" is a promise that in a later version of a program,
some component will be provided that is now missing. The compiler can
proceed with syntactic and semantic checks on the rest of the program.
Proofs, code, types, and assertions may all be missing in this sense. It is
clear that the program cannot be expected to run until essential parts are
pr ovid ed.

It should also be possible to specify "undefined" types and predicates.
It may be too much work (or even impossible) to formally write down the
complete definition of some predicate or proof. An undefined predicate can
then be useful, provided that there is some mechanism for letting the
programmer claim that it is satisfied. The compiler can then propagate the
assertion throughout the program as part of a data type or otherwise, and
can test whether it has been duly claimed whenever it is required to hold.
There will then be two kinds of assertions:

- Announcements, where the compiler believes the programmer, and
Assertions, where the compiler checks the programmer, possibly using

the announcements or other means.

8. SUBTYPES

If assertions are to become part of the data types of objects, we are
going to have to have convenient ways of adding and removing assertions from
a data type. Removing assertions can be left to a coercion (this is similar
to using a subtype when a type is required in the DOD's languages), but
adding assertions will have to be done bya proof or as an implicit
consequence of a run-time test (IF test THEN test true ELSE test false FI).

APPENDIX

Intuitionistic propositional calculus can be built from data types:
procedural proofs of Heyting s axioms are listed below. Each entry in the
following list is of the form "proposition --- proof".

AB 43p.96

P => (P AND P) ---
LAMB(P a) STRUCT(P first, second): (a, a);

(P LAMB(= ffi> Q)P=>>((P AND R) => (Q AND R)) ---
Q ab) ((P AND R) => (R AND R)):

LAMB(P AND R ac) (Q AND R) :
(ab(flrst OF ac), second OF ac)

((P => Q) AND (Q => R)) => (P => R)
LAMB((P ~> Q) AND (Q => R) abbc) ~P-=> R) :

LAMB(P a) R: (second OF a b b c) ((f i r s t OF a b b c) (a))

Q
"~g(~>bQ)~(; - :>' - Q): ~ (P a)Q: b

(P AND (e ffi> Q)) => Q ---
LAMB (STRUCT (P first, (P => Q) second) aab) Q :

(second OF aab)(first OF aab)

P => (P OR Q) ---
LAMB(P a)UNION(P, Q): a

(e OR Q) => (Q OR P) - - -
LAMB(UNION(P. Q) ab) UNION(Q, P) : ab

Algol 68 mode equlvalencing does this one ! #

((P ffi> R) AND (Q ffi> R)) => ((P OR Q) R)
L ~ ((P -> ~ AND (Q - , ~) abbc) (~ OR ~ - - - > ~) :

LAMB(P OR Q ab) R :
CASE ab IN

(P a): (first OF acbc)(a),
(Q b) : (second OF acbc) (b)

ESAC

NOT P => (P => Q) - - -
LAMB(P => (MODE M)M a f) (P => Q) : LAMB(P a)Q : a f (a) (Q)

((P => Q) AND (P ffi> NOT Q)) => (NOT P) - - -
abab) FALSE) : LAMB((P ffi> Q) AND (P => NOT Q) (P ->

LAMB(P a) FALSE .
(second OF abab) (a) (f i r s t OF a b a b (a)) .

REFERENCES
I !] Heyting A., Intuitionlsm, North Holland Publishing Company, 1951.

Lindsey, C.H., Modals, Algol Bulletin AB37.4.3, July,]97~.
Boom, H.J., Extended type checking, in New Directions in Algorithmic

Languages, 1976, pp. 27-42, IRIA, a~so separately as Mathematical
~encre report IWOO/76, Amsterdam.

