“Algol Bulletin no. 4l

CONTENTS

AB41.0
AB4l1.1

AB41.1.1
AB41.1.2

AB41.1.3
AB41.1.4
AB41.1.5

AB41.1.6

AB41.1.7
AB41.2
AB41.2.1

-AB41.4

AB41.4.1
AB41.4.2

AB41.4.3

AB41.4.4
AB41.4.5

AB41.4.6

AB41.5

AB41.5.1
AB41.5,2

JULY 1977

Editor's Notes
Amnmouncements
ALGOL 60M

Conference Proceedings: New Directions
in Algorithmic Languages — 1976

Conference Proceedings: IVth III Meeting
ALGOL 68

The Standing Subcommittee on ALGOL 68
Support-Treatment of Questions asked about
the Revised Report.

Informal Introduction - Revised Edition
Reportfin BRAILLE '
Letters to the Editor

A.N., Maslov, Hardware Representation

Contributed Papers

" R. de Morgan, The Algollers

J.C. Van Vliet, On the ALGOL 68 Transput
Conversion Routines.

D. Holdsworth, Visibility and Teachability of

1/0 Processing in High Level Languages.

A.N. Walker, The Syntax of an ALGOL Program

R. Bell, A Token;recognizer for the Standard

Hardware Representation of ALGOL 68
Some ALGOL 68 Compilers

ALGOL 60 Supplement - Errata

Revised Report - Errata

ISSN 0084-6198

PAGE

F-J

W 00 N N o

10

25

47
71

74
74

AB4lp 1

The ALGOL BULLETIN is produced under the auspices of the Working Group
on ALGOL of the International Federation for Information Processing (IFIP WG2.1,
Chairman Professor J.E.L. Peck, Vancouver).
The fo;lowing statement appears here at the request of the Council of IFIP:
"The opinions and statements expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IFIP undertakes no responsibility
for any action which might arise from such statements. Except in the case
of IFIP documents, which are clearly so designated, IFIP does not retain
copyright authority on material published here. Permission to reproduce
any contribution should be sought directly from the authors concerned.
No reproduction may be made in part or in full of documents or working papers

of the Working Group itself without permission in writing from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been
provided by Professor Dr. Ir. W. L. Van der Poel, Technische Hogeschool, Delft,
The Netherlands. Mailing in N. America is handled by the AFIPS office in

New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of *7 per three issues, payable in advance. Orders and remittances
(made payable to IFIP) should be sent to the Editor. Payment may be made in any
currency (a list of acceptable approximations in the major currencies will be
sent on request), but it is the responsibility of each sender to ensure that
cheques etc. are endorsed, where necessary, to conform to the currency control
requirements of his own country. Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor, since it is
not the policy of IFIP that any person should be completely debarred from
receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,

England.

Back numbers, when available, will be sent at #3 each. However, it is
regretted that only AB32, AB34, AB35, AB37, AB38 and AB39 are currently available.
The Editor would be willing to arrange for a Xerox copy of any individual paper

to be made for anyone who undertook to pay for the cost of Xeroxing.

AB41 p. 2

AB41.0 EDITOR'S NOTES

Again, I have to apologise for the long delay since the last issue, and
again the reason has been lack of contributions. Again also, the remedy lies
in your hands, dear readers. As it turns out, due to various items turning
up at the last minute, we have been able partially to make up for the delay by
producing a rather thicker issue than we have had recently.

Although the contents of this issue are fairly typical of the sort of

material we like to publish, there is one departure from the norm in the form

of a rather substantial algorithm. Although I have no desire to compete with

CACM, and other Journals which publish algorithms regularly, I think that there
could well be a place in the ALGOL Bulletin for Algorithms of a specialized nature,
such as those concerned with program handling (e.g. compiling, editing, formatting,
etc.) or those which illustrate novel, or particularly neat, programming methods.

So, please send your contributions. Algorithms may be in ALGOL 60

(preferably ALGOL 60M) or in ALGOL 68, and the customary rules (notably those
requiring evidence that the algorithm actually ﬁorks) will apply. Of course,
comments and certifications will also be welcomed in due course.

Now for soﬁe good news. Three issues ago, I had to increase the cost of
the AB from $5 to $7 per three issues. At that time, I was finding it difficult
to predict what future costs would be and there was very little fat in hand.

Now things are much better, a good cash balance has been accumulated, and I
therefore feel justified in declaring this to be a free issue. In other words,
all those subscribers entitled to receive this issue (AB41) will automatically

have their subscription extended by one, so that they will eventually receive

four issues for their $7.

AB41 p.3

AB41.,1 Announcements

AB41.1.1 ALGOL 60M
After it had gone to press, some serious misprints were discovered in
the Supplement to the ALGOL 60 Revised Report (Comp. Jour. 19 3 Aug. 1976),
and errata to correct these appeared, together with the full Modified Report,
in Comp. Jour. 19 4 Nov. 1976. The errata are also reproduced at the end of the

Report and those who have copies of that edition of the Supplement are invited

to elaborate them without delay.

The full Supplement has now been published again (with those errata

incorporated and hopefully with no new ones introduced) in SIGPLAN Notices.

AB41.1.2 Conference Proceedin&p: New Directions in Algorithmic Languages ~ 1976

The papers and discussions at the 1976 meeting of Working Group 2.1 at
St., Pierre de Chartreuse have been edited by Steve Schuman in a similar format
to last year's proceedings, and all ALGOL Bulletin subscribers should have had
a copy by now. Additional copies may be obtained, so long as stocks last,

from Stephen A. Schuman, IRIA Laboria, BP 5 - Rocquencourt, 78150 LE CHESNAY,

France.

AB41,1.3 Conference Proceedings: 4th International Conference on the Design
and Implementation of Algorithmic Languages.

The proceedings of this Conference, held at New York on June l4th - 16th 1976
(see AB39.1.4) may be obtained, for U.S. $12.0C from:

Miss Lenora Green,
Courant Institute,
251 Mercer Street,
New York, NY 10012,
U.S.A.

' (Cheques to be made payable to New York University).

AB41 p.4

AB41.1.4 ALGOL 68

There are a few small misprints in the Acta Informatica edition of the
Revised Report, and the relevant errata will be found on the last page of this
AB. Please elaborate them without delay. Note that the TR74-3 edition is
unaffected. Note that only very minor misprints are being corrected at this
stage. There are in addition various bugs that have been found in the Revised
Report, but no action is being taken on these until the Support Subcommittee has
considered them separately (see the following item, describing the procedure

that is to be followed.)

In the meantime, the complete Revised Report (with these misprints corrected)
has been published in SIGPLAN Notices May 1977. Also, in that same issue of
SIGPLAN Notices are "A Sublanguage of ALGOL 68" by P.G. Hibbard (the defining
document of ALGOL 68S), there published for the first time and the Report on
the Standard Hardware Representation, (originélly published in AB40.5). Thus
all three Reports on ALGOL 68, as approved by the Working Group and by IFIP, are

now available in one volume. Reprints from ACM.

AB41.1.5 The Standing Subcommittee on Algol 68 Support Treatment of Questions
asked about the Revised Report.

The process for answering questions about the Revised Report and other

associated documents:

1. A question is first posed to the Subcommittee by sending a letter to
the convener of the Subcommittee either to request interpretation or
to report an alleged error, inconsistency or typographical misprint
in the Revised Report on the Algorithmic Language Algol 68 or associated
documents. The letter which becomes the property of Working Group 2.1
should include a self-referencing publication release because private
communications are automatically subject to copyright by international
convention.

2. The question should arrive sufficiently in advance of a meeting to allow
appropriate distribution to the subcommittee before the meeting in order
to be considered at that meeting.

3. During the meeting following receipt and distribution of the letter by
the convener, the question will be scheduled for discussion,voting

and action., The possible actions which can be taken include:

-

AB41 p.5

a Decide no problem is raised by the question,
or that the problem raised by the question
had already beéen discussed and resolve.

b Decide that a trivial problem exists raised
by the question.

For possibilities a and b the convener will refer the letter to a
member. of the Subcommittee who will write an appropriate response.

¢ Decide that the question raises a problem.
The convener will appoint a taskforce to examine the question and
report back. The taskforce has the responsibility to produce a
written report which will explicate the problem as well as possible
actions for its resolution. This should be accompanied by a statement
of the relative advantages and disadvantages of each action.

In any case, a file of all questions and their answers will

be maigtained by the convener for the future use of the Subcommittee.
At a future time an editing taskforce may be asked to compile a

publishable document containing the essence of the file.

The current convener of the Standing Subcommittee on Algol 68
Support, R. Uzgalis, can be contacted at: University of California,
Los Angeles, Computer Science Department, Boelter Hall 3731H,

Los Angeles, California, 90024.

AB41.1.6 1Informal Introduction — Revised Edition

The Revised Edition of the Informal Introduction to ALGOL 68, by C.H. Lindsey
and S.G. van der Meulen has now been published by North-Holland at a price of
Dfl. 35.00/US $14.50 Paperback (ISBN 0-7204-0726-5) or Dfl. 70.00/US $28.75
Hardback (ISNB 0-7204-0504-1). It may be obtained from booksellers or direct from
North-Holland Publishing Company, P.O. Box 211, Amsterdam, The Netherlands.
In the U.$.A, and Canada it is distributed by Elsevier North-Holland, Inc.,
52 Vanderbilt Ave., New York, N.Y. 10017, and in Australia by Dutch-Australian
Book Depot, 11-13 Station Street, Mitcham, Vic. 3132. Please be sure that you

ask for, and obtain, the Revised Edition, which comes in a garish red cover to

distinguish it from the lurid green of the first editiom.

This Revised Edition is the volume referred to in 0.3 of the Revised Report.
Although it still follows the same general plan as the original edition, it has
been brought fully into line with thé Revised Report. As before, it aims to
describe the whole of the language and may thus be used both as a work of reference
and as a text book (although it does not claim to be suitable as a primer for novices).

Appendices have been added on ALGOL 68S and on the Standard Hardware Representation.

AB41 p.6

AB41,1.7 Report in BRAILLE

After the publication of the Revised Report on ALGOL 68 in 1975, the
Mathematical Centre has undertaken the task of producing a braille version
of the ALGOL 68 Report. This braille version is based on a copy of the tape
from which the Revised Report has been typeset. Except for Winnie the Pooh
and a few other pictures, the complete Report has been converted.

Any information on this braille version can be obtained from:

J.C. van Vliet,
Mathematical Centre,
2e Boerhaavestraat 49,
AMSTERDAM,

The Netherlands.

Copies of the Report will be made available in the form of either a large box
of brailed paper or an (IBM-compatible) magnetic tape containing a one-to-one
representation of the braille version.

The price will be limited to the cost of reproduction.

" AB41 p.7

AB41.2 Letters to the Editqr

AB41,2.1 ‘Hardware Representation

The Editor,
ALGOL Bulletin.

Dear Sir,

1 suggest a new formulation of section C.1 of the Report on the Standard
Hardware Representation for ALGOL 68 (AB40.5 and SIGPLAN Notices May 1977), as follows:

The standard is defined in terms of worthy characters in order that program
conversion will require only a transliteration of character codes.

The transliteration may be done automatically if each implementer provides
the following: |

1) Each translator has a single input representation corresponding to the
standard. However, a program may be represented in another code than this input
representation. A mapping program is needed which maps the program to the input
representation. There are many mapping programs. .

2) A portable program should provide a "cap" before the codes of the program
in the porting file.

The structure of the cap

The file contains codes represented by some fixed number of bits. Each
character (worthy character or helping character, see below) is represented by a
word containing such a fixed length code. There are helping characters:
~disjunctor, new line, end of text and end of input. The cap is the sequence of
representing words for the characters:disjunctor, new line, all of the worthy
characters in the order in which they appear in *1, end of text, end of input, the
upper-case national letters followed by a disjunctor (or only a disjunctor), the
lower-case letters followed by a disjunctor or the lower-case letters and lower-
case national letters followed by a disjunctor (if there were upper-case national
letters) or only a disjunctor.

3) There is a general mapping program such that it may do the transliteration
of new codes given the cap and an integer (the number of bits in each representing
code).

(The cap is not a universal method of portability, but it is a satisfactory
method in many cases.)

Yours faithfully,

A.N, Maslov

Department of Algorithlmic Languages,
Faculty of Computer Science,

Moscow State University,

Moscow. U.S.S.R.

AB41 p.8

AB41.4.1 The’Algollers

by R. de Morgan. (Reprinted from the Newsletter of the BCS ALGOL Group).

A long, long time ago (about eighteen years, give or take a furlong), several

wise men sat down and designed a programming language. Being of a somewhat
adventurous nature, they produced a somewhat adventurous language; indeed, so
adventurous was this language that people debate to this day the properties of

this wondrous language and others that owe some of their origins to it. It was
called "Algol 60", but didn't seem to have any features of specific use to
astronomers. They revised it a bit in 1962, but unlike later languages, did not
update its number; indeed, most people were quite content to call it simply "Algol",
and some of them spelt it with capital letters.

Algol had a wealth of features. Some indeed were quite extraordinary and could

be used to perform wonderful feats of computation in mystical ways (the way it

could find prime numbers with a single statement seemed to smack of witchcraft).
Some of the features were left to the imagination and ingenuity of the implementers,
resulting in a wealth of dialects of the language. Machine dependent features

such as input-output were skilfully avoided so as to avoid contamination of
programs, Nevertheless, implementers seemed to think that this was a desirable
addition, and added input-output systems of every conceivable shape and size.

While the outside world were marvelling at the wonders of Algol 60, the wise

men were busily at work designing its successor. They spoke of it as "Algol X",

and there was even talk of an "Algol Y", but when it saw the light of day, it

was called Algol 68. Here indeed was a magnificent language - it had a bigger,

" better Report, parts of which were written in a curious form called a W-grammar, and
seemed to require many type fonts, not to mention italic full stops. "Why didn't they
use BNF?" was the cry. Fortunately, someone pointed out that if one reau the
examples at the back of the report, it all became clear.

Meanwhile, halfway up a hill in darkest Worcestershire, at a Very Secret Place,
Scientific Civil Servants were labouring night and day to produce the very first
Algol 68 implementation. This was known as Algol 68R and became very famous.
Following this, many other implementation sprang up, but implementers had great
difficulties with some of the features, and various subsets were born.

But the Algol 60 devotees had not been idle. Meeting at secret locations in the
English countryside, they set out to eliminate the dreaded Remaining Trouble Spots.
They called their Algol 60 "Modified" (they did not like to call it Algol 76 for fear
that the Algol 68 authors would become angry with them for having a higher number),
and they even included a simple input—output system. They produced a Report,

as was the custom, and published it in a Learned Journal.

AB41 p.9

Both the Algol 60 and Algol 68 devotees were members of a Secret Society, which
was called the Algol Assoéiation. ‘They would come from far and wide to listen

to the wisdom and lore imparted by famous Algol mystics. They also communicated
with each other by means of a Bulletin, speaking both in words and algorithms,
Although there was some amount of rivalry between the Algol 60 and Algol 68
factions, they were united in their scorn of other societies such as the Cobolers
and the Fortranners. These societies spoke strange tongues which were most
un—Algoi—like.

There had grown up a movement called Structured Programming, and the Algol devotees
found that they éould write structured programs without much difficulty. Indeed,
by using Algol 68 they found that they could do away altogether with the hateful
labels that many said spoiled the beauty of their languages. The Cobollers and
Fortranners were very jealous of this, and tried to write structured programs of
their own. The Algollers saw that this was futile and laughed them to scorn
saying "How can’they expect to write structured programs with such foolish languages?".
But the people of the world were much confused by all this talk, and did not know
which way to turn. Most of them were very conservative by nature and said

"Why should we use these neﬁ languages that these mystics invent? Let us instead
use the languages that our forefathers have always used." And so they went their
way, and performed their Sorts and Merges, and entered Subroutines, and did other

mundane things; for such was the way of the world.

AB41 p.lo
AB41.4.2 On the ALGOL 68 Transput Conversion Routines

by
J.C. van Vliet (Mathematisch Centrum, Amsterdam).

ABSTRACT

In section 10.3.2.1. of the Revised Report on the Algorithmic Language
ALGOL 68, a set of routines is given for the conversion of numerical values
to strings and vice versa. If this set is used as an implementation model,
the way in which the numerical aspects are dealt with causes considerable
trouble. A new version of these routines is given in which numbers are first
converted to a string of sufficient length, after which all arithmetic is per-
formed on this string. In this way, for each direction only one place re-

mains where real arithmetic comes in.

INTRODUCTION

In section 10.3.2.1. of the Revised Report on the Algorithmic Language
ALGOL 68 [1] (in the sequel'referred to as the Report), a set of routines
is given for the conversion of numerical values to strings and vice versa.
Compared with most other sections of the Report, this one seems to have re-
ceived little attention from the editors.

This section may be looked upon from two different points of view: one
ma; take it either as a definition of the intention of the conversion, or as
some kind of implementation model. In any case, the following remark from

section 10,1.3, of the Report applies:

"Step 8: If, in any form, as possibly modified or made in the steps
above, a routine-text occurs whose calling involves the manipu-
lation of real numbers, then this routine-text may be replaced
by any other routine-text whose calling has approximately the

same effect;"

AB41 p.l11

Taking the former point of view, one might wonder whether the inten-
tion is best described by a set of ALGOL-68 routines. (In that case, one
should at least add an extensive description in some natural language too.
For exaﬁplé, it took me quite some time to discover when exactly undefined
is called. It seems to I ve been the intention to call undefined only when
it is obvious that no string may be delivered satisfying the constraints set

by the parameters, as in the case fived(x, 3, 4). However, when x‘anﬂ 7 are

of the mode real and int, respectiveiy,'whole(x, 1) calls undefined, while
whole(Z, 1) does not.)

Using the routines as an implementation model, the remark from section
10.1.3. that is cited above will have to be invoked heavily. To give an ex-
ample, it is impossible to print L max‘real'by‘means of the routine. fixed

from the Report, because of the stat.ment
L real y:= x+ L .5 xL .1+ after;,

which is used for rounding. Adding one half of the last decimal that is
asked for excludes a whole class of numbers in the vicinity of L max real
from conversion! Also, y may well be equal to x after execution of this
statement if the number that is being added is relatively small compared to
x; so the result is truncated rather than rounded
' The errors found in the section on conversion routines in the Report,
are listed below. The problems caused by the way in which the numerical
agpects are dealt with (overflow; accuracy) are also discussed. Next, a ver-
sion of the routines is given which bypasses these numerical probléms. Here,
numbers are first converted to strings of sufficient length, after which all
arithmetic is performed on these strings. This version may really be seen as
an implementation model: for each direction of cbnversion, there is only one:
place where real arithmetic comes in. .

The Contfol Data ALGOL 68 implementation [2] has been of great hélp in
testing both.thé routines from the Report and the ones given below. Numerous
talks with H. Boom, D. Grune and L. Meertens have contributed considerably

to the polished form of the various routines.

AB4]1 p.12

When we try to use the routines from the Report as they are, the fbllowing
numerical problems arise (apart from the one already mentioned in the intro-
duction):

- The statement in fixed:
while y + L .5 * L .1 + after 2 L 10 + length do length +:= 1 od;

assumes that integers may take on the same values as reals, for

L 10 + length has mode L int. This may well not be the case, thus yielding
;ﬁ integer overflow. Presumably, the intention has been to write

L 10.0 * length.

Notice however that the left-hand side of the boolean expression may

still cause a real overflow if y is approximately equal to L max real.
- The statement in subfixed:
while y 2 L 10.0 + before do before +:= 1 od;

may cause an overflow if y and I max real are of the same order of magni-

tude. One could write something like
while y / L 10.0 2 L 10.0 * (before - 1) do before +:= 1 od;,

but then the next statement will cause the overflow. One may combine the

two statements as follows:
while y 2L 1.0 do y /:= L 10.0; before +:= 1 od;

1f, however, division is not too accurate, the repeated division may cause

large numbers to be converted much less accurately than small numbers.

AB41 p.13

ANOTHER SET OF CONVERSION ROUTINES

The main differences between the set of conversion routines presented

below and the set in section 10.3.2.1. of the Report are the following:

- numbers are converted to strings of sufficient length, after which the
rounding is performed on the strings. This seems to be the only reason-—
able way to ensure that numbers like L max real may be converted using
fixed or float. (One must be careful when rounding causes a carry out of
the leftmost digit. For example, in float fhis will cause the decimal
point to shift. This will in turn yield a new exponent which, after con-

version, may need more (or less!) space.)
- the routines fZxed and float are written non-recursively.

- no use has been made of the routine L standardize. In general, I have
tried to minimize the number of places where real arithmetic comes in.
Only (part of) the routine subfixed, and a few lines in string to L real
use real arithmetic and may therefore have to be rewritten for a specific

machine.

Care has been taken that whole, fixed and float behave exactly as the

corresponding routines from the Report are intended to. However, as has al-
ready been discussed briefly in the introduction, it is difficult to see
exactly when undefined is called. Therefore, I have decided to call
undefined in all cases where error characters are returned.

The (hidden) routines subwhole and subfixed behave slightly different-
ly from their namesakes in the Report. In particular, error characters are
never delivered. Together with the removal of L standardize, this necessi- .
tates some changes in the editing of integers and reals in the routine putf

in section 10.3,5.1. of the Report.

Conversion by means of whole.

The routine whole is intended to convert integer values. It has two

parameters:

- v, the value to be converted, and
- width, whose absolute value specifies the length of the string that is

produced.

" AB41 p.14

Leading zeros are replaced by spaces and a sign is normally included. The
user may specify that a sign is to be included only for negative values by
specifying a negative or zero width. If the width specified is zero, then
the shortest possible string is returned.

The routine whole proceeds as follows: First, using subwhole, a string
s 1s built up containing all significant digits and possibly the sign of the
number being converted. If the user has specified a width of zero, this
string 8 is delivered as a result., Otherwise, the length of s should not be
greater than the absolute value of the specified width. If it is, undefined
is called and error characters are returned; if not, spaces are added in

front of s if necessary, and the resulting string is delivered.

Examples:

whole(Z, —4) might yield "...0", TLLQQ", ".-99", "9999", or, if i were
greater than 9999, "xx*xx", where "*" is the yield of errorchar;

whole(Z, 4) would yield ".+99" rather than "..99";

.whole(Z, 0) might yield "0", "99", "-99", "9999" or "99999".

proc whole = (number v, int width) string: -

case v in
$(L int z):
(bool neg; string s:= subwhole(x, neg);
(neg | "-" |: width > 0 | "+" | ") plusto s;
if width = 0 then s
elif int n = abs width - upb 8; n 2 0

thenn * "," + 8

else undefined; abs width * errorchar
i,
$(L real x): fized(x, width, 0)%

esac,

roc # subwhole = (L int x, ref bool neg) string:

begin string s:= "", L int n:= abs x; neg:= x < L 0;
while dig char(S (n mod L 10)) plusto s;
noverab L 10; n=2L 0
do skip od;

S8

end;

AB41 p.15

Conversion by means of fixed.

The routine fixed is intended to convert real values to fixed point
form (i.e., without an exponent). It has an gqfter parameter to specify the
number of digits required after the decimal point. The other parameters have
the same meaning as those for whole.

From the value of the width and after parameter, the amount of space
left in front of the decimal point may be calculated. (The values of the
after and width parameter should be such that at least some number may be
converted according to the format they specify. If this is not possible,
undefined is called and error characters are returned.) If the space left in
front of the decimal point is not enough to contain the integral part of the
number being converted, digits after the decimal point are sacrificed. If
the number of digits after the decimal point is reduced to zero and the num-
ber still does not fit, undefined is called and error characters are re-
turned.

Implementation of the simple algorithm described above involved some
nasty problems. Therefore, the comprehensive description of the new version
of the routine fixed which follows is supplied with various examples to il-
lustrate the places where great care is needed to maintain correctness. The
routine proceeds as follows: If the value of the qfter parameter is less
than zero, undefined is called immediately, and error characters are re-
turned. Otherwise, using subfixed, an unrounded string s is built up, con-
taining all significant digits before the decimal point, and after+l digits
 after the decimal point. As a side-effect, the variable point points to the
digit after which the decimal point has to be inserted, while the boolean
variable neg indicates the sign of the value submitted (neg = v < (). Thus,

for example,

"31300" & point =

s:= subfired(3.13, 8, point, neg, false) = s =
8:= subfixed(0.75, 1, point, neg, false) = s = "75" & point = 0.

In both cases, neg gets the value false. Then, a value w is calculated in-
dicating the number of positions available for digits and the decimal point.
For example,

fixed(3.13, 10, 3) =»w = g,

fixzed(0.75, 0, 1) > w = 0,

fixed(0.75, 2, 1) = w = 1,

AB41 p.16

In the last example, undefined will be called, because no number can be con-

verted according to this format (the two positions specified are swallowed by
the sign and the decimal point, so no space remains for the one digit speci-

fied after the decimal point). (Obviously, in case the value of the width

parameter is zero, undefined will not be called.)
Subsequently, two cases are distinguished:

+ The user specified a width of zero, i.e., the shortest possible string
containing after digits after the decimal point has to be delivered. In
this case the string is simply rounded starting from the last element. If
this rounding causes a carry out of the leftmost digit, the decimal point
has to be inserted ome place further to the right (fized(0.95, 0, 1)
leads to s = "85" & point = 0 via subfixed, and s = "10" & point = 1 via

round, ultimately resulting in the string "1.0" to be delivered);

+ The user specified a non-zero width. Then, the number digits is calcula-
ted: the number of positions available for digits. This number obviously
is either w — I or w: either a decimal point is to be delivered, or it is
not. A decimal point will not be delivered if gfter = 0, or if the deci-
mal point just falls outside the available number of positions w. (Note
that the case after = 0 does not present any problem and may safely be
ignored.) Otherwise, the decimal point has to be inserted somewhere, so
digits = w — 1. (Note furthermore that if the room available for digits
is not even sufficient to contain all digits of the integral part (i.e.,
point > w), a call of undefined will ultimately result.)

The next step will be to round the string. Again, if the number of posi-
tions available for digits is greater than the number of digits to be de-
livered, the string is simply rounded starting from the last element, If -
this causes a carry out of the leftmost digit, the decimal point has to
be inserted one place further to the right, and the longer string is de-
livered. Otherwisg, the string is rounded starting from the digit at po-
sition dZgits + 1. If this rounding causes a carry, the string has to be
snipped at the position indicated by digits, except when the decimal
point is now left just after position w. (This tricky case occurs, e.g.,
at the call fixed(99.7, -3, 1). Following the flow of control, we see
that digits = 2, so a call round(Z2, "9970") results; which yields

AB41 p.17

true & 8 = "100". As, however, the decimal point just shifted out of the

available number of positions (3), the whole string can be returned.)

We are now left with a string s containing’all significant digits to be de-
livered. If there is space for at least one more digit, and the decimal
point is at the extreme left, "0" is added at the front end, thus delivering
"0,35" rather than "..35" (and "0" rather than ".” in a case like

fixed(0.3, -1, 0)%).

As a last step, undefined is called and error characters are delivered if
the room available for digits is not sufficient tc contain all digits of the
ihtegral part of the value submitted, or the after and width parameters are
such that no number may be converted using that format. In all other cases,
a sign is added if necessary, and a decimal point may be inserted. If the
specified width is non-zerb, the remaining positions are filled with spaces.

The resulting string is delivered.

Exampies:

fized(x, -6, 3) might yield ".2.718", "27.183", "271.83" (one place after
the decimal point has been sacrificed in order to fit the number in),
"2718.3", ".27183" or "271833" (in the last two examples, all positions
after the decimal point are sacrificed);

fixed(xz, 0, 3) might yield "2.718", "27.183" or "271.828".

‘proc fixed = (rnumber v, int width, after) string:
if after < 0
‘then undefined; abs width * errorchar
else int point, bool neg;
string s:= subfized(v, after, point, neg, false);
int v = abs width - (neg v width > 0 | 1 | 0);
if width =
then (round(upb s = 1, s) | point +:= 1)
else int digits = (w = point | w | w - 1);
if digits > upb s - 1
then (round(upb s - 1, s8) | point +:= 1)

else (round(digits, s) | point +:= 1; (point = w | s:= s[:digits]))
Iz

RicH

(point = 0 A (g = "" v w - 15>upb s) | "0" plusto s; point:= 1);

L]

AB41 p.18

if upb s < point v (after 2 w A width = 0)
then undefined; abs width * errorchar
else s:= (neg | "-" |: width > 0 | "+" | "") +

(point = upb s | s | s[:point].+ "." 4 glpoint + 1:1);
(width = 0 | s | (abs width—-upbs) * "." + s)
It
jicH
Notice that the above routine does not distinguish variable-length numbers;
they are just passed down to subfixzed. The same will hold for the routine
float given below.

The routine subfixed performs the actual conversion from numbers to
strings, and may be called from either fixed or float. When called from
fiwed, it has to return a string containing all digits from the integral
part of the value submitted, and after + 1 digits from the fractional part.
When called from float, it has to return a string containing the first
after + 1 significant digits. In both cases, the last digit is truncated,
and not rounded. (The rounding is done later on, and rounding the number

twice may cause something like 9.46 to be converted to "10.0".) Considering
this string as a number, the value of the parameter p will be the shift of

the decimal point from the first digit. The parameter neg will indicate the

sign of the value submitted (true iff negative).

It goes without saying that the routine subfixed must be completely
accurate: it will be used to measure the accuracy of numerical algorithms,
and we want to be sure that that is really what is measured, and not the
accuracy of the conversion. It is therefore impossible to give an ALGOL-68

routine that will do. Instead, we give the following semantic definition:

It is a unit which, given a value V, yields a value S and makes

p and neg refer to values P and B, respectively, such that:

* B is true if V is negative, and false otherwise;

it maximizes

AB41 p.19

under the following constraints:
“ lwb § = 13 |
cupb S =P . after + 1 if floating is false, and after + |
otherwise; "
* for all i from lwb S to upb S:
- 0s c; < 9, where c; = char dig(S[il);
* M < |V]..

(If one wants to circumvent the need to know the storage allocation tech-

niques used by the compiler (which is needed to build the string), one may

construct an embedding like:

proc * subfixed = (number v, int after, ref int p, ref bool neg, bool floating)
string:
begin int size; guess storage(v, after, size, floating);
¥ gize:= some sufficiently large integer, an upperbound for
the number of digite that will result #
[1: size] char &; | |
~ do subfized(v, after, p, neg, floating, size, 8);
' ¥ the actual conversion; the characters are placed in s.
As a side-effect, size indicates the number of digite placed
in g #
8l : sizel
end;
).
The (hidden) routine round is used for rounding. The parameter s refers

to the string that will be rounded, the parameter k refers to the last ele-

ment of s that will be returned. The routine yields true if the rounding

causes a carry out of the leftmost digit. -

proc % round = (int k, ref string s) bool:
if bool carry:= char dig(slk + 11) 2 5; &:= s[i k]; carry

then
for § from k by -1 to 1 while carry
do int d = char dig(sljl) + 1; carry:=d = 10;
elil:= (carry | "0" | dig char(d))

AB41 p.20

od; . .

(carry | "1" plusto 8); carry
else false
hicH

Conversion by means of float.

The routine float is intended to convert real values into floating
point form. It has an exp parameter to specify the width of the exponent.
Just as in the case of the width parameter, the sign of the exp parameter
specifies whether or not a plus-sign is to be included. (This possibility is
not mentioned too clearly in the Report.) If the value of the exp parameter
is zero, float acts as if minus one were specified, i.e.,, the exponent is
converted to a string of minimal length. (Again, this possibility is not
mentioned clearly in the Report. Moreover, it contradiéts Fisker's remark
on page 3.4 of his thesis [3], where it is stated that in this case float
acts as if the value of the exp parameter were bne! This seems to be a mis-

take.) The other parametefs are the same as those for the routine fiwed.
(However, the value of the width parameter may obviously not be zero.)

The routine float proceeds as follows: From the values of width, after
and exp, it follows how much space is left in front of the decimal point (as-~
suming no sign will be delivered). Then subfired is called, which returns a
string & containing a sqffitient number of significant digits. As a side ef-
. tect, exponent gets the value of the exponent, assuming the decimal point to
be just in front of the first digit while neg gets to indicate the sign of

the number. For example,

s: 3ubfixed(321.073, 4,‘exponent, neg, true) = g = "32107" & exponent = 3,

subfixed(.004379, 4, expoment, neg, true) = s = "43790" & exronent = -2.

8:

We now adjust before if a sign is to be delivered.

The number is then (conceptually) standardized, yielding the real exponent.
| This exponent now has to fit in a string expart, whose .cngth is bounded by
the width specified by the exp parameter. If this is not possible, the
digits after the decimal point are sacrificed one by one; if there are no
more digits left after the decimal point and the exponent still does not fit,
digits in front of the decimal point are sacrificed too. Note that this has

repercussions on the value of the exponent (and thus possibly on the width

AB41 p.21

of the exponent). More precisely, this process goes as follows: Let before
and aft denote the number of digits before and after the decimal point, res-—

pectively. Let expsp&ée be the width allowed for the exponent., If the expo-
nent does not fit (upb expart > expspace), then one of the following happens:

i) 1If there are still digits after the decimal point to be given in
(aft > 0), then aft -:= 1. 1f, however, as a result of this, aft =0,
we threaten to deliver something like 3.e+5, so the decimal point has to
be left out too, which gives us one digit extra in front of the decimal

point, so
before +:= 1; exponent -:= 1.

ii) If there are no digits left after the decimal point, digits in front of

the decimal point are given in, so
before -:= 1; exponent +:= 1.

In either case, one position extra is assigned to the exponent, so
expspace +:= 1. This shuffling will end, and then the string is rounded.
If this rounding causes a carry out of the leftmost aigit, the exponent must
be increased, which may cause some more shuffling. During this process, we
have to check at each step whether all digits have been consumed
(sign before + sign aft < 0, which also caters for wrong input parameters). In
that case, undefined is called and error characters are delivered. Otherwise,

the various parts are glued together and the resulting string is delivered.

_ Examples:

float(x, 9, 3, 2) might yield "-2,718,t0", "+2.72,+11" (one place after
the decimal point haé been sacrificed in order to make room for the
exponent);

float(z, 6, 1, 0) might yield "-256,1", "+26,,12" or "+1,4:-9" (in case x
has the value 0.996,-9).

proc float = (number v, int width, after, exp) string :
begin int before := abs width - (after # 0 | after + 1 | 0) - (abs exp + 1),
exponent, aft := after, expspace := abs exp;
bool neg, rounded := false, possible:= true;
string &:= subfixed(v, before + after, exponent, neg, true), expart:= "";
(neg v width > 0 | before -:= 1); exponent -:= before;
g@@geqmmn=(mpmwm:<ol "Ml:exp > 0| M| M) 4o
subwhole(abs exponent, loc bool);

AB41 p.22

if sign before + sign aft < 0
then posstible:= false
elif upb expart > expspace
then expspace +:= 1;
(aft > 0 | aft -:= 1;
(aft = 0 | before +:= 1; exponent -:= 1)

| before -:= 1; exponent +:= 1); true
elif rounded then false
elif round(before + aft, 8)
then exponent +:= 1; rounded:= true
i
do skip od; -

if 71 possible then undefined; abs width * errorchar

else (neg | "-" |: width > 0 | "" | ") + g [: before] +
(aft = 0) "" | "" + glbefore + 1 : before + aftl) +
""" + (expspace - upb expart) * "." + expart

bicd

nd;

e

Conversion of strings to numbers.

The routine string to L int from section 10.3.2.1. of the Report works
fine, so we will not pay any attention to it. Although the routine string to
L real looks reasonable, it uses L standardize, and a new version of it is
given below. The foutine needs real arithmetic, and thus must be rewritten

on most machines. The version given here is merely an outline of how things

might be done.

The routine string to L real is hidden from the user. Therefore we may
safely assume that the layout of the string supplied is correct. The first
_element of the string contains the sign of the number. Furthermore, the
string may contain a decimal point, and it may contain an exponent.

The routine proceeds as follows: First, we search for the exponent
part, the beginning of which is indicated by "e”, and the decimal point ".”,
If there is an exponent part, it is converted using string to int, yielding

an exponent expart. If the conversion of the exponent is unsuccessful,

AB41 p.23

string to L real returns false, indicating unsuccessful conversion too.

Otherwise, the first significant digit is sought, pointed to by J. The expo-—

‘nent expart is now adjusted so that it yields the exponent of the number as-

suming the decimal point to be just after the first significant digit. L max
real, being the largest value that may result from the conversion, is adjus-
ted in the same way, yielding a value max and an exponent max exp. Of course,
conversion is unsuccessful if expart > maxr exp. Subsequently, the first L
real width significant digits are converted. (Note that any further digits
would not affect the value.) At each step of this conversion, we have to
cater for the case where expart = max exp; for then, the next digit of max
and the one from the string have to be compared to see whether conversion
may still continue. As a last step, if conversion has been succeésful, the
resulting number is (supplied with the correct sign) assigned to the para-
meter . The routine yields true if the conversion has been successful, and

false otherwise.

proc * string to L real = (string s, ref L real r) bool:

begin int e:= upb s + 1; char in string("e", e, s);
int p:= e; char in string("-", p, s); int expart:= 0;
bool safe:= (e < upb s | string to int(sle + 1 : 1, 10, expart) | true);
if safe
then int §:= 1;

for © from 2 to e - 1

while s[Z] = "0" v s[Z] = "" v g[Z] = "
do j:= 1 od;

expart +:=p - 2 - j;
L real x:= L 0, max:= L max real, int length:= 0, max exp:= 0;
while max / L 10.0 + max exp > L 10.0 do max exp +:= 1 od;
(expart > max exp | safe:= false); |
for i from j + 1 to e = 1 while length < L real width a safe
do ~
if sl<] = "" then skip
elif int si = char dig(sli]); length +:= 1; expart = max exp
 then int d = S entier (max / L 10.0 + max exp);
(si > d | safe:= false | x +:= K 8¢ * L 10.0 4 expart);

max -:= K dx L 10.0 4+ max exp; max exp:= expart -:= 1
else x +:= K st * [10.0 + expart; expart -:= 1

It

AB41 p.24

od;
(safe | vs= (8[1] = "+" | = | -x))
picH
safe
end;

 REFERENCES

[1] WIJNGAARDEN, A. VAN, et al (eds.), Revised Report on the Algorithmic
Language ALGOL 68, Acta Informatica 5 (1975) 1-236.

{2] ALGOL 68 Version I Reference Manual, Control Data Services B.V.,
Rijswijk, The Netherlands, 1975.

{3] FISKER, R.G., The Transput Section for the Revised ALGOL 68 Report,
Dissertation, Dept. of Computer Science, University of

Manchester, August 1974,

AB41 p.25

AB41,4.3 Visibility and Teachability of I/O Processing in High-Level
Languages. D. Holdsworth. (University of Leeds).

INTRODUCTION

A recent search for a widely available high-=level
language suitable for initial teaching to students in
courses ranging over DP, mathematics and computational
science has proved fruitless. In attempting to find a
reason for this one is drawn to the conclusion that the
DP student needs a greater contrél over I/0 than
is provided by most "scientific" languages, and DP languages
(e.g. COBOL) take a derisory view of arithmetic. In addition
whefe layout control is available (COBOL, FORTRAN, ALGOL68)
it is provided by a lot of new syntax specific to I/0. This
paper argues that the semantic rewards for learning this
syntax are insubstantial, and consist primarily of a
limited masking from the user of the characters making up
a line of text. From an educational point of view this is
probably a bad thing. Recent interest in teachable

languages™’

has not tackled this problem.

We illustrate a possible solution for output, by
proposing a scheme which is embedded in Algol68, and would
argue that the result is in many ways an improvement in the
facilities provided by the language definition3. The
proposal involves no new syntax, and a partial implementation
(using AlgolGS—Rﬁ is included as Appendix 1. The major
reason for the choice of Algol68 is the presence ofbgeneric

user-defined operators in the language, thus making for

a clean implementation of semantic concepts which are almost

AB41 p.26

visible in COBOL. The system could be readily extended

to inclﬁde fixed-format input with a minimum of difficulty,
but we still see some problems with free format input
which seem to indicate that many languages make a mistake
in imposing an artificial symmetry between input and

output.

N Algolé68 I/0

The official I/O system'of Algol68 not only involves
new syntax in formats but also involves stretching unions
close in dynamic typing, and so involves run time overheads,
or "botching" the compiler to treat print etc. as special

cases, as in Alg0168C5.

2. " Mapping onto an output device

The scheme we propose is based on the idea that
lines of characters are the only things ﬁhat can be output.
For this we use the outp operator. Where this is not true
(i.e. interactive graphiés devices) we envisage the provision
of extra outp operators to perform the transput of non-
character information. Thus conforming to our view that
output can be handled by declarations utilising existing
language features. The operator outp is either monadic or
dyadic. The monadic form outputs a row of chars to standout,
while the dynadic form has the name of the file as its

first operand:

AB4l p.27

e.g.

outp"line of output"
is equivalent to

standout outp "line of output".

Control of éaper motion can be achieved by providing
system declarations of some other modé‘of 6bject which
defines the operation to be performed, as with the
standard newline and newpage:

e.g..gggg newpage

Probably the most convenient default is to have
each outp produce a newline at the beginning, equivalent to:

print({(newline,"line of output"))

New facilities like sameline could provide for
reéuirements such as overprinting.

With such a scheme the choice between control
operations and prihting operations would be taken at

compile time.

3. Mapping onto rows of characters

The above simple output system presupposes that
thefe exist convenient syntactic¢ constructs for con-
struction of appropriate character strings. If Algol68
offered user-defined widenings, it would be possible to
arrange that clauses such as:

linel[7:11]:=4
would widen an integer i into a [1:5} char. However, our

aim is to avoid introducing new language features largely

AB41 p.28

for the benefit of the i/o system, although a user-defined
widening opens up possibilities for other meaningful cases.
Nonetheless, we shall not persue the avenue further. A
very similar (superior?) facility is obtained by intro-
ducing a dyadic operator repr which stores a representation
of its 2nd operand in its first operand. For character
output of the sort we are conéidering, the lst parameter

would bé of mode refl[l:]lchar, (see §4 for more powerful

options offering layout control).

It is envisaged that in normal use there will be

a character buffer used for assembling output, say:
[l:léO]gQgE line;

The construction of a line of output consisting of
the values of an intege; 1 and reals x and y would procede
as follows:

clear line;
linel:5]) Egggé;
1ine[7:16] reprx; Line[18:27] repr y;
outp line
This is undoubtedly longer than:
brint((newline, i, £, Y))
but it can be taught without invoking unions and row displays,
and does in fact embody more layout control. A fairer
equivalent would be:
printf(($lddddd,zzd .ddddddddd,zzd .ddddddddds,

i,%,9))

or print((newline,whole(%,5), fizxed(x,-12,7), fixed(y,-12,7)))

AB41 p.29

There is ample scope for discussion about the default
action on things such as zero suppression and signs. The
system shown in appendix 1 suppresses leading zeros and
the + sign. The character positions thus suppressed are
left unchanged. This gives the user freedom to initialise
the field with the zero suppression character. Others may
argue for space filling.

Appendix 2 shows an example of a program to print
solutions to an ordinary differential equation. The
procedure spr produces the output which includes a simple

graph in addition to numerical values.

4, Layout control for real numbers

The facilities already proposed include control of
the field width of number output. For output of reals we
commonly need to control the presence or absence of an
exponent and the number of digits after the decimal point.
In addition, for both ints and reals we may wish to control
printing of signs and leading zeros.

It seems inevitable that increasingly fine control
of layout will involve increasing amounts of detail. One
option is to head straight for an all-embracing system.
However, there seems to be genuine-value in a means of
controlling precision of output for reals while still
taking default action for signs and zero suppression. We

therefore introduce two new modes eformat and fformat

AB41 p.30

(with deference to FORTRAN) whose refl Jchar fields select
the fields within a line which are to be used for different

parts of the number:

mode eformat struct (refl Jchar mantissa,exponent)

mode fformat struct (ref[Jchar <Zpart, fpart);

If we now wish to enhance the example of section 3
to priht z in fixed point with 5 decimal places and y in
floating point with 4 decimal places we would write:

clear line; linel:5]repr i;

eformat yform (line(18:231,1inel[24:271]);

fformat xform (l1inel7:10],1inel11:161]);
in practice the above 2 statements
would be outside any loop ¢#
xform repr x; yform repr y;
outp line;
Appendix 3 shows a modified version of spr of
appendix 2 which utilises the above facilities.
The templates xzform and yform play a role analogous

to that of PICTURE's in COBOL, and repr is acting in a way

similar to the MOVE verb.

5. General layout control

Clearly one can go on introducing increasingly
complex structures, or have global variables to control
the options such as zero suppression. Another option is

to offer a general structure most of whose fields are unions.

AB41 p.31

This is perhaps the most attractive solﬁtion as the definition
of this structure would be a formal (nearly) description of
-the layout facilities availéble, and any particular structure
would be a syntax tree for the particular layout required.

The initialisation of all the fields in such a structure
would be tiresome, and a system would therefore provide

some default skeletons (with nil for the ref(lchar fields)
into which a user couid overwrite his own choices. Of

course, we are now back to a large amount of run time
analysis, but we have not introduced any special purpose

syntax.

6. Efficiency

In the examples of appendices 1 and 3 we have
manually selected only those declarations of repr and outp
which our progrém invoked. This corresponds to a system
where invokation of system library routines is automatic
(as in Algol68-R). The appendix 2 version using outp and
repr is 1000 words (24-bit) smaller than the standard
version. The appendix 3 version is 5000 words smaller than
its standard formatted i/o countérpart. Comparison of run
times also favours the outp/repr version. This program
was not created for the purpose of these examples but was

originally written as a student exercise in Algol 60.

AB41 p.32

7. Extension to cover input

The extension to cover formatted input is fairly

straightforward and involves an inp operator and possibly
rper (?). The notion of a general layodt control which
specifies a syntax tree is interesting in the context of
input. However, the more common requirement is for free-
format input. Perhaps'in this case we could have rper
take the required input from the beginning of the [IJchar
operand, aésign the value to the other operand and deliver
as a result either the number of characters used, or a row
consisting of the rest of the input string. However, this
lacks some of the essential simplicity that we sought to
introduce for teaching purposes. (The languages does contain
a precedent in the very useful '/;='.) Appendix 4 shows an
example wheré a matrix is input using this system after

first reading bounds from a single line.

8. Conclusion

We have produced a blueprint for an output system
for Algol68 without use of syntacticior semantic extensions
to the language. We deal only in output of basic types,
but the system makes easy the definition of user-defined
repr's which will output any of a user's structures. The
necessary looping for handling arrays is already provided
~in the language by the do constructs. It is suggested that
the concepts involved in this output system are valuable

to DP students, computer scientists and mathematicians alike.

AB41 p.33

There seems to be an obvious disadvantage of
greater verbosity, but this is no bad thing if greater
‘clarity and feadability are a result. As to teachability
- the system is untested in this area.

One facility which has arfsen by accident, is the
ability to print a row of reals with all the integral
parts on one line and all thé fraction parts below by use

. | | '

of formats‘of the form: .

: | fformat spuiter (Iine 1[2:2], lige 2[?:21).
vWe also have gie ability, to édit the character
output before printing by normal manipulation on the row
of charéct;rs. &

From a purely pedagogic point of vyiew the separation
of data transfer from charaéter cohversion seems valuable
in a language which offers rows of characters. As'an
illustration of the minimal.nath;e of semantic extension
we may observe that the implementation Zoseg (appendix 1)
uses only 2 code patches (each one instruction) and each is
very system dependent - the peripheral transfer extracode
(in outp) and the paper feed field (pfcc). The iast one
could be eliminated by use of [lchar, but with some loss
of efficiency.

Finally, let us compare the repr opératof with the
conversion operators of §10.3.2.1. of thé Algolé8 report3
While these routines offer the capébility to deliver a “
string as a result of conversion they do not give the same

feeling of mapping values into fields within a line; nor do

we have the uniformity of syntax for different modes of

values,

AB41 p.34

a syntax which may be extended to cover user-defined

modes by further declarations of repr.

REFERENCES

1.

Designing a Beginner's Programming Language,
L. Geurts and L., Meertens = Maths Centre Amsterdam
preprint IW 46/75 ~ also in "New Directions in Algorithmic

Languages 1975", edited by Stephen A. Schuman - IRIA.

Reliability, Portability, Teachability: Three Issues for
New Programming Languages, 0. Lecarme - '"New Directions in

Algorithmic Languages 1975",

Revised Report on the Algorithmic Language Algol68,
A.van Wijngaarden et al -~ Springer Verlag 1976.

Algol68-R Users Guide, P.M. Woodward and S.G. Bond - H.M.S.O.

Algol68C Reference Manual, S.R. Bourne, A.D. Birrell,
J. Walker. Computer Laboratory, Corn Exchange St.,
Cambridge.

N.B. the single bracket on print$5.4.4.

1 p.35 .
AB4L p Appendix 1
[1:1241CHAR buff, .
REF BYTES pfcc = REF BYTES CODE 100,1/buff[1] EDOC;
pfcc 1= “O000A"; C pfcc for next record C

INT ca := 8r200000, rep, nchars;
C setting up a control area for 1lp C
REF CHAR addr := buff[4]; C get chars 3 pos C
[1:60]CHAR errorline; ’
errorline[:44] := "OUTPUT ERROR : 00 DIGIT FIELD WILL NOT HOLD ",

OP OUTP = ([]JCHAR line) :

BEGIN .
buff[5:UPB line 4 4] := line;
nchars := IPB line + 1;

CODE 157,0/ca EDOC; C transfer to 1lp C
pfcc := "000A" C reset pfcc to default C
END; .

MODE PFC = BYTES; C mode for paper feed control C
PFC newline = "000A", newpage = "000I", sameline = "0001";

OP OUTP = (PFC control) :
BEGIN

pfcc := control
END;

OP RLPR = (REF[]CHAR ch, INT i) :
Converts integer held in i into a row of chars in ch,
Leading zeros are suppressed the resulting character
positions are left unchanged. Plus signs are suppressed
and any minus sign is placed before the most significant
., digit.
C
BEGIN
INT end := UPB ch + 1, rest := ABS 1i;
C end is the most sig end of the chars output so far
rest is integer which remains to represented to the left of end
c ‘
INT minend = ABS (i<0) + 1; C minimum allowed value of end
\ - allows for minus sign C

WHILE :
IF end > minend
THEN .
ch [end MINUS 1] t= REPR (rest'/:='10);
rest # O C stop when only zeros to left C
ELSE
FALSE
FI
Do
SKIP;
IFP i O C minus sign needed C
THEN
ch [end MINUS 1] := %"
FI;
Ir rest # 0 C if integer was too big for layout C
THEN
errorline(16]) := " "; Clear i1st char because of sero sup C

errorline(16:17] REPR UPB ch;
(errorline[45:] := "...cceeeseeeeees™) REPR 1i;
OUTP errorline C error report on standout C
FI
END;

AB41 p.36

MODE EFORMAT = STRUCT(REF[]}CHAR m, e);
MODE FFORMAT = STRUCT(REF[]JCHAR i, £f);

OP REPR -
C Fixed Format Decimal.
sign (if -ve) and integer part go into iOFch,

C
BEGI

N

(FFORMAT ch,

INT sign = SIGN x;
T i = ENTIER

IN
RE
IN

ioFech REPR

(foFch) (1]

FO
ts C
DO
BE

EN
END;

OP R

T w;

ABS
AL f := ABS x -

X;

i;

C working variable C

signt*i;

e = ..ll’

R i FROM 2 TO UPB fOFch

GIN

£f := £%10;

w := ENTIER f;

(fOFch) I[1]

f := £
D

EPR =

- W

(EFORMAT ch,

:= REPR w;

REAL x) :

and decimal point and fraction part go into fOFch,

C handle integer part C

C decimal point C

C produce requird no of fraction digi

C i part of f is next digit C

REAL x) H

C put real no in x into floating decimal in ch ¢

BEGI

N

C any appropiate algorithm for conversion C

END;

OP REPR =

Cc
BEGI

N

(REF[]CHAR ch,

C Represents x in the given field as appropriate,
The format within ch is chosen so to give the most
readable representation which fits the field
without loes of accuracy,

REAL

x)

C any appropriate conversion routine ¢

END;

OP R
BEGI
IF
TH

EL

FI
END;

EPR =

N

(REF[]JCHAR ch,
C bool to chars C

UPB ch 5

EN

ch[1) := (b !

SE
ch{1:5]

1= (b

BOOT,

b) :

C use 0 1 rep for short strings C

Ol“" ! non

"TRUE *

)

! L

C other chars unchanged - bad idea ? C

FALSE")

AB41 p.37 Appendix 2

BEGIN
_REAL a, b, ya, y, h, hj, fs, x, nf;

(1:66]CHAR line; C outpﬁt'line - used in spr C‘

REF{]CHAR yform = line[12:20];
REF[)JCHAR xform = line(:9]; <§~

PROC spr = VOID :
COMMENT prints one line output for one x value C

BFGIN

INT yn; set line to spaces
CLEAR 1line; & |

xform REPR x; yform REPR y; &— convert x and y

IF ABS y < fs C if graph in scale C

THEN
yn := ENTIER(nf*y); C scaled onto integer ¢
line([41) := "1"; .
line(41+yn] := "4" C point to mark value C

FI;

OUTP line € . transfer to output

END;

PROC stepint = VOID :
COMMENT do one step of ode integration C
BEGIN

REAL y1, y2, y3, y4;

y1 1= x*x + y*y;

y2 = (x + y*ytl) * 2,0;

y3 = (yl*y1l 4+ y*y2 41) * 2,0;

y4 := 6 * yl*y2 + 2%y*y3,

y := {(((y4*h/4+y3)*h/3+y2)*h/2+y1) *h+y;
X := x+h
END;

a := 0; b :=0,9; ya := 1,0;
nj := 5; ng := 5; nhalf := 1; fs := 15,0;
nf := 20,0/fs; C scale for printer graph C
region (a, b, (£fs <« 0t £f8 ! 0) , ABS fs)3
CLEAR line; .
line(:5] REPR nj; line[6:10) RFPR ns; OUTP line;
axessi (0,1, 1.0);
TO nhalf
DO
BEGIN
ns := ns + ns;
hy := (b - a)/nj; x := a;
h := hj/ns; y := ya;

point (x, y)3
TO nj DO
BEGIN
spr;
FOR i TO ns DO .
(stepint; Jjoin (x, y); plotas (x, y, "1 ")
END;
sSpr;
frame;
OUTP "wewrmcmcwa= - - L R L PP LT LY
ouTp * *
END .
END

AB41 p.38

Appendix 3

EFORMAT yform = (line{10:16), line{[17:20]);
FFORMAT xform = (line([:3], line[4:9));

PROC spr = VOID :
COMMENT prints one line output for one x value C
BEGIN

INT yn;

CLEAR line;

xform REPR x; yform REPR y;

IF ABS y < fs C if graph in scale C

THEN)
yn := ENTIER(nf*y); C scaled onto integer C
line{41] := "I%;
line{41+yn} := "4+* C point to mark value C

FI;

OUTP line

END;

Output from above procedure

0.00000 1,0000E O
0.18000 1.2216F O
0.36000 1.5829E O I +
0.54000 2.2651E O
0
1

0.72000 3,9516F I +
0.90000 1,.4293FE I +
Output from program as given in Appendix 2
5 5

0.00E O 1,0000000 I+
0.1800000 1.2216790 I+
0.3600000 1,5829401 I +
0.5400000 2,2651024 I+
0.7200000 3.9516723 I +
0.9000000 14,293022 I +

AB41 p.39
‘ Appendix 4

C *kkkk® TNPUT (TENTATIVE) AR RAAEAR C

OP RPER = (REF INT i, [JCHAR ch) 1INT :

C takes an integer from the row ch regarding any character
which cannot form part of an integer as terminator.
Leading spaces are ignored. The value of the resulting
integer is assigned 'to i and the result of the operator
is the number of characters read.

[1:120]CHAR 1line;

INT m, n, C matrix bounds C)
i; C character pointer used in reading C
INPline; C read a line of input ¢
i := m RPER line; C reads value of m and leaves - i so that ,, C
n RPER lineli:]; C .. it can be used to read the rest of the line
C
[1:m, 1:n]REAL a;
FOR j TO n
DO
BEGIN
i := 0, INP line; C initialise pointer and read input C
FOR k TO m
Do
i PLUS (af{k,j] RPER linefi:])
END; C converts into alk,j] and increments the char pointer C

C We do seem to have lost some of the desired simplicity !!! C

Afterthought: User-defined conversions from []JCHAR to a user-defined
mode cound be used by langquages such as Alphard and CLU (see same book
as references 1 and 2) to define the. format of literals in program
text.

This would mean that these routines would need to be executed
at compile time,

AB41 p.40

AB41.4.4

THE SYNTAX OF AN ALGOL PROGRAM

A, N, Walker
.[Dept of Mathematics, The University, Nottingham NG7 2RD,]

Abstract: ‘'begin real x; x := 1 end' is proved to be a syntactically
_correct Algol 68 particular-program,

The folk-lore of Algol 68 has it that the Report and the Revised
Report are such formidably obscure documents that it is quite impossible
actually to follow through the syntax for any real programs, Despite
discovering that at least one of the Revised Editors - who should perhaps
remain nameless ~ thought so too, I attempted the task for the (hopefully)
particular-program 'begin real x; x := 1 ond' and was pleasantly surprised
to discover that it isn't really all that bad,’

Fig (1) gives the complete production tree, except that
(a) 'reference to real' is abbreviated to *RR', (b) predicates are given
separately - see fig (ii) -, and (¢) productions of *NEST' are abbreviated
to 'N2', 'N2 new' or 'N4' as appropriate, 'N2' corresponds to all the
declarations of the standard and particular preludes and is rather long if
written out in full, N2 new' is the nest which also includes the labels
before the *begin' (there aren't any!), and *N4', which is 'N2 new new RR
letter x', also includes an entry for ‘real x;'. Fig (iii) lists all the
motaproductions actually used in deriving the production tree from the
syntax rules quoted, (Note that fig (iii) does not include metaproductions
used only in deriving fig (iii): for exsmple, in order to derive "NOTION:
go on,', 'NOTION: go o, go, g.' and "ALPHA: g, n, o,' are reqired, but are
not given in fig (iii).)

Fig (1) contains 35 productions, which is, as it happens, exactly
as many as are required in the Algol 60 syntax for the same program, How-
ever, Algol 68 has verified (as Algol 60 cannot) that the *x* in 'x :=1'
is that declared in 'real x', that 'x' is suitable to have *1' assigned to
it, and indeed that *1' must be widened in the process., Admittedly, the
Algol 68 rules are slightly longer,

Fig (1) constitutes a proof that 'begin real x; x := 1 end' is a

particular-program provided that we verify that each of the predicates in
fig (41) holds., (We should also verify fig (iii), which is left as an

AB41 p.41

| | P

|
+~ <oigh> —+ |

<I119>
uorjeudyssy PN yy mox; pedusyoun X 103367 UITA JOYFFIUEPT Bururgep PN wy ‘[d]
g |]] | | s
i <q19> | <3thb> + <u1gb> |
(H] ‘uotzsulysss ¥N Proa o3 peproa ‘[o] X X03361 YY JO UOFITUTFOP eIqerIea yy PN %exsyoep ¥N [eex Tenjos ‘[)]
|) | | !)
+ <%I19> ~+ <o1Th> <QIEESy> ~~mmmm———y
0601000 woyywudisse PN proa Juoays X Je33e1 ¥y Jo woyliuyjep peujof oTqetIvA ¥y PN ‘Io3vaeual o1dues [wool YN Wy
| [| |
<p1ZE> l + <oT¥b> +
arun ¥N proa 3uoxys ‘tvl X 103361 Yy FO UOFIWIV[OODP OIGBII®A WY PN
i | s | ¢
o s.ﬂﬂmv - * A‘.H.H.V -
Y3TA serres PN proa Juoays ‘ueyo3 uo o3 ‘x X03301 Yy JO UOFIEIBTOGP PN ‘[g1
| | | |
+ <qrzf> + -
X J6330T HY Y3I4 seyyes YN pyoa Junxys
sPue, | .ﬂﬁuono
4 <w1zE> 4
ueY0o3 pue proq ‘x Je33er yy aeu Jupurzep OsneIo IBIIes aeu ZN Pyos Juoays ‘ueyoz urleq P1Oq
| |) g
+ <pPEET> + |
owd proq x Ie3301 WY aeu Buturzep esnw¥lo [vIIes aeu ZN Proa Juoays g ‘Cv]
) } !
<8TTE> , <YTI0T> +
9FNBI0 POSOTO Meu ZN ProAa 3nuoxis ‘Jo uoyrjurFep peqey Peutof aeu zZN

i |
<31101> +
wsIdoxd denotyaed ZN

a
»

AB41 p.42

aTe *JPU® T =: X ¢x T®ex uydeq,
4 wsxdoxd-reinotjand edendus] eouoegeyex eyl JIoJ eex3 uorjonpoad - (x) 313
1oquis euo 3y13Ip
|
<OTITY> suUor3vjUesexdas euos, -]
xeydLo 3y3yp B |
1 <1ho> <8EET>

<qLE1> Toquis NOILON ‘uoyjdo eouenbes juswBSuad
eouenbes JeydLo 3y31p } }
| pm— <FTTO> =~===—st
<qQrITY> ueqo3 NOILON i8nyy,
Texeunu jutod pexyJ] *untjvjuesexdexr eilznduv] eouelejel oyj pus Toquwis o
) } ueyon3 ueemjeq se[nx uorjonpoid eyl JI0F UOIIBIAGIGQE 4
<BITIS> <eEfy> *3x63 3 (¥T) 317 eas - eywoypexd :[*]
uoyjwsjouep jexdejur ‘uoyjzdo eouenbes JuewSwvad ‘uorjvjuesexdea edenduwy eouexeyex :,°°*°,
I B *3aodey pesjaey Ul eInIX :¢*°*°>
<®T09> + *X 103301 Yy Meu aeu ZN :¥N
xe3ouep PN 1exlejur *sepniexd xsInorjaed 3n paspuwys
B |] X g &y3 J0; 8Iefw| Buyuywiuod - <3TY0T>
<IT119> 4 | oInt @68 ~ ZISAN JO uUorlonpodd B
xejouep PN Tewxdejur woxy peSuwyoun ueyo3 X xe33er ‘[1] ‘d ae3301 °°° meu °°°* mou meu IZN
[] | -] § | ‘{86l 03 eousxeyex ¥y
| <%159> | +~ <qIgh> -+ *ALdNF ¢
[71] ‘xejouep YN [wex 03 peuepia ‘[¥] X 1633687 Y3¥a XOfJTjuepy peyldds ¥N Wi
{] . |] . : $UOF3IBION
R i L4 12 et <IT19>
9021600 Jojouep FN [wed 3uoays X X03361 Y3}TA Jeyrauepy peyidde ¥y yy woxj peSuwyoun
¢ . I |
| <P1ZE> <eTT9>
[r] ‘37un PN 1wex Buoxys 9901600 X I03361 YITA JeyJjjuepy perirdde VN yy 1Jos JI90a, p
| | =%, | 4 |
+= <9T1ZC> —=+ 4 <qQ1125> ueyo3 [wex ‘[x]
eoxnos PN [eex ‘ueyo3 sewooeq ‘uoyywurisep PN uy | |
| I v | X, L] <qigb> —=—=- +
+~~ <BITZS> + -+ 4

uopjwuldrsse PN ¥y
| |

ueyo} x Ixe33er ‘[J]

1 T96I YITA UOF3IBOTPUT epowm perydds PN T Tvex
1
| |

AB41 p.43

[A): where () is () .

[B]: where (reference to real letter x) is (reference to real letter x)
[C]): where (local) is (local)

[D]): where (real) is (real)

[B): where real i real identified in N4

{F]: where reference to real letter x independent

[0]: where (N4 assignation) is (N4 assignation)

[H]: unless (voided to void) is (deprocedured to void)
[1}: where reference to real letter x identified in N4
‘[3]: where real deflexes to real

[K]: where (N4 denoter) is (N4 denoter)

[L): unless (widened to real) is (deprocedured to void)

fig (ii) - table of predicates used in fig (i)

exercise, None of it will take you very far afield except the expansions
for 'NOTION' and *NOTETY' which get very tedious unless you use theorenm
1, below,) '

Theorem 1 Any non-empty sequence of small syntactic marks other than (et
and *")' § ie of letters 'a', 'b*, ..., 'z'; see section 1.1.3.1.a in
the Revised Report § is a terminal metaproduction of °*NOTION®,

Proof Otherwise, note that any single such mark is & terminal metaproduction
of 'ALPHA®', and let 5 be a shortest counterexample, Then § contains
more than one mark, and can therefore be written as the concatenation
of a shorter non-empty sequence Si and a (single) mark, M say. But
§1, by hypothesis, is a 'NOTION' and M is an *ALPHA', so § may be
produced from "NOTION ALPHA', This contradiction establishes the
result,

Corollary Any (possibly empty) such sequence is a terminal metaproduction
of *NUTETY®,

Theorem 2 The predicate 'where (NOTETY) is (NOTETY)' holds,.
Proof We use the following lemma,
Lemma ‘where (NUTETY) begins with (NOTETY)® holds,
Proof k left as an exercise! Use contradiction on a shortest counter-
example, by rules 1,3.1.a, 1.3.1.i, 1.3.1.j and 1.3.1.k, and theorem

1. 3
Thoorem 2 follows immediately from 1.3.1.g, 1.3.1.c and the lemma,

COMMODN ;
COMORF :
DECS:
DECSETY:
DIGIT:
EMPTY:
ENCLOSED:
FORM:

INDICATOR

NOTETY:
NOTION:

PACK:
PROP:
PROPSETY :
QUALITY:
REFP
SIZETY
SOFT
SOID:
SOME :
STRONG:
STYLE:
TAB:

TAG:
TALLY:
TAX:
TERTIARY:
UNIT:
VIRACY:

reference to real variable,
N4 assignation; N4 denoter,
reference to real letter x.

digit one,

closed,

N4 applied identifier with letter x; N4 assignation;
N4 denoter,

identifier; mode indication,

new reference to real letter x,

loocal,

unchanged from,

: real; reference to real,

real,

integral; realj

N2; N2 new; N4.

(See fig (1),
N2: new new D1 new D2 label letter s letter t
letter o letter p,

N4: N2 new new reference to real letter x,
D1: <declarations of standard prelude>,
D2: <declarations of particular prelude>,)

strong void N2 new serial clause defining new reference
to real letter x.

becomes; bold begin; bold end; digit cypher; go onjg
letter x; pragment sequence.

bold pack,

reference to real letter x,

reference to real letter x; .

real ij reference to real,

reference.

referenoce to real; void,

unchanged from,

strong void,

strong real N4; strong void N4,
voided to; widened to,

bold,

real,

letter x,

i,

letter x; real,

applied identifier with letter x coercee.
assignation coercee; denoter coercee,
actual,

fig (4ii) - metaproductions used in fig (i)

AB41 p.bb4

AB41 p.45

Application of theorems 1 and 2 shows that predicates [A, B, C,
D, G, K] all hold. Predicates [H, L] require a sort of converse:
Theorem 3 Let 51 and §2 be terminal metaproductions of *NOTETY' of different
lengths, Then 'unless (S1) is (52)' holds.
Proof Again, we need a lemma,
Lemma If S§1 is shorter than §2, 'unless (S1) begins with (52)° holds,
Proof k again, left as an exercise! Use contradiction on a counter-
example having 51 as short as possible, and rules 1.,3.1.e, 1.3.1,h
and 1.3.1.3. &
Theorem 3 now follows immediately., A more general result can be proved
without enormous difficulty, but would take us through the obscurities
of 1.,3.1.1 and 1.3.1.m,

Theorem 3 establishes [H, L]. Predicates [F, J] yield immediately
to rules 7.1.1.b and 4.7.1.a respectively, Unfortunately, the remaining
predicates, [E, I], take us through some remarkably obscure syntax., Take
first [1). From 'where RR letter x identified in N2 new new RR letter x°',
we produce (7.2.1.a) 'where RR letter x resides in RR letter x', and hence
(7.2.,1,¢c) 'where reference to real equivalent reference to real’, However,
this does not ‘'obviously®' hold, as you will soon discover if you start
following the syntax from 7.3.1.a. There is no general theorem 'where MODE
equivalent MODE®, because the syntax also checks that 'MODE' is well-formed.
This is, of course, exactly the sort of side-effect that many of us complain
about when it is perpetrated by our students, Theorem 4, below, deals with
this particular case, but I should hate to have to prove a mode equivalent
to itself if there were a couple of (perfectly innocent?) structs and unions

around,

Now consider [E]., The intention is clearly to arrive at the mode~
declaration of 10.2.2.d, and indeed it is not too hard to verify that 'where
real i real independent P! holds for P being 'reference to real letter x°,
empty, and the "PROPSETY' of the particular-prelude (section 10.5.1; note
the sentence beginning *lowever, ...' and that each declaration in 10,.5.1
is an identifier-declaration and is therefore independent of any mode-dec-
laration), so that predicate [E] is reduced to 'where real i real identified
in N1' where °N1' is *new new D1' in the notation of fig (iii). CHL argues
that 10.2.2.d proves that 'Di' is of form 'DECSETY real i real PROPSETY'
and that to enquire further is metaphysicul speculation, This seems to be
a weakness in the definition of pseudo-comments (10.1.3, step 7), because

L ") , AB41 p.46

»

there is a universal panacea for nasty closed clauses (eg '(Eramt code
machine<code for some horrible operation pragmat skip)®), but no way out

for indesoribable declarers. (The device 'mode real = struct (int exponent,

long int mantissa)® avoids some but not all of the problems,) Anyway, if
we accept CHL's argument, [E] reduces quickly to "where real i real resides
in real i real’, which in turn reduces to 'where real equivalent real',

This too is easier to prove from theorem 4 than directly,

Theorem 4 'where SAFE1 PREFSETY PLAIN equivalent SAFE2 PREFSETY PLAIN'
holds .

Proof Otherwise, let M be a shortest terminal metaproduction of ?PREFSETY
PLAIN' which permits (for suitable 'SAFE1', °*SAFE2’) a counterexample,
By hypothesis, and the first production of 7.3.1.b, 'unless (SAFE1)
contains (remember M M) or (SAFE2) contains (remember M M)' holds.
If M is 'PLAIN', then "where (M) is (M) and remember M M SAFE1
equivalent SAFE2' holds by theorem 2 and 7.3.1.q, and 'where SAFE1 M
develops from SAFEL M and SAFE2 M develops from SAFE2 M' holds, by
7e3:1.,c, theorem 2 and 7.4.1.a, If, alternatively, M is 'PREF PREFSETY
PLAIN', then *where (PREF) is (PREF) and remember yin SAFE1 PREFSETY
PLAIN equivalent yin SAFE2 PREFSETY PLAIN' holds by theorem 2 and the
hypothesis, and 'where yin SAFE1 M develops from SAFEll M and yin SAFE2
M develops from SAFE2 M'. holds by 7.3.1.c, theorem 2 and 7.4.1.b, In
either case, there is a contradiction, which establishes the theorenm,

Corollary *where PREFSETY PLAIN equivalent PREFSETY PLAIN' holds.
Proof 7.3.1.2 and theorem 4,

The corollary establishes 'where reference to real equivalent
reference to real' and *where real equivalent real' and hence completes the
verification of all predicates. Thus 'begin real x; x := 1 end” is indeed
a particular-program. It even appears to be a meaningful particular-program

provided that "maxint® is at least one.

AB41 p.47
AB41.4.5 A Token Recognizer For The Standard Hardware Representation
of Algol 68.
: by

R. Bell, Department-of Computer Science,
Teesside Polytechnic,

Middlesbrough,

England.

O In ntroduction

~~

This token-recognizer is designed to scan texts which
purport to be Algol 68 gggyw_gfr-p_?gx;gn_s_ in the standard
hardware representation defined by Hansen and Boom?! ,

It will seek to parse each given text into a sequence of

language tokens, digestible by, for instance, the syntax
analyser of an Algol 68 coampiler,

As the word "token" bears a specialized meaning in Algol 68,
this document will instead speak of "words", which are, broadly
Algol 68 TAX-symbols, denotations or other NOTION-symbols 2.,
Bach activation of the recognizer will deliver a representation
of Just one such "word" to the superior routine that drives 1%,

This recognizer may serve, it is hoped, as a general purpose
front-end component, not only for full compilers but alsc for
syntax checkers or preprocessors, '

The algoritbm is presented in Algol 68, Resaders are warned
that it has not been machine-checked directly (because the
author has no access to any compiler for canonical Algol 68),
However, an analogous program in Algol 68R has been written
and compiled and is being tested,

{ Hensen W.J, and Boom H,
Report on the Standard Hardware Representation for Algol 68,
2AB 40,5) in Algol Bulletin 40 (pp 24 - 43), 1976.
hereinafter designated by "HR"),

The other fundsmental document is, of course:

Wijngearden A,v, and others, _

Revised Report on the Algorithmic Language Algol 68,
Springer Verlag:' 1976 (and els-evrhereﬂ1 .
(designated by "RR"), '

2 In this document, Algol 68 paranotions are hyphenated where
necessary and (except in section 2) underscored,

AB41 p.48

1 Words

This recognizer does not deal with the following contexts
in particular-programs :-

Eag interiors of pragments (and by implication, their terminators)
b interiors of %ormaf-fexte (end by implication, their
terminators), except that it is applicable to closed-clauses,
CHOICE-clauses, units or denoters discovered inside
format-texte .

This recognizer may encounter, where it 1s applicable, six classes
of "words", The initial character of a word implies its class,

It is assumed here that the set of "base characters" which occur
in texts 1s identical to the set of "worthy characters" defined
in HR1l, and may include both upper and lower case letters,

The s8ix classes of words are:-

(1) Tags, i.e., TAG-symbols, which are identifiers,
label-ldentlifiers or field-selecfors :

’

(2) Bola-words:
There are 61 specified bold-words which are
fixed as representations of certaln NOTION-symbols
(see Appendix). Any other bold-word must be &

bold-TAG-8 bol, and as such either a
mode-IﬁaIca%Ion (TAB-sxgpo) or an operator

HR3,5 expleins how tags and bold-words are differentiasted:
mainly by "stropping", of which there are three alternative
s8tandard regimes, "point", "upper" and "res",

(3) integer-denotations, real-denotations, bits-denotations
(aleso digit-symbols in priority-definitions) ;

(4) character-denotations, string-denotations ;

(5) operators which are not bold-Tag-s%gbols,
i,e. DOP-BECOMESETY-sxg ols ;
’

also the ie-derined-as-sxgso]

"(6) Some other NOTION-symbols (e.g. &, I, k).

Outslde character- and gstring-denotations, "point" and "res"
stropping do not distinguish between upper and 1ower case letters

(@ and A are regarded as the same character); '"upper" stropping
does distinguish (indeed, requires both cases to be used), and
confines upper case letters to bold-words,

AB41 p.49

The classifying powers of initial characters of words are

asg

follows :=

CHARACTER

SIGNIFICANCE

CLASS

a

letter

upper case letter

"point" stropping : start of a tag

"upper" stropping
lower case letter : start of a tag
start of a

bold=-word

e oo oo

"pes" stropping : start of a tag
or of a reserved
bold-word
or of a tag followed
by a reserved
bold-word

NV N W

(point)

if followed by a letter :
start of a bold-word
if followed by a digit :
start of s real-denotation
otherwise an incorrect character at
this level

a

digit

start of an integer~ or real- or
bits-denotation,
or a digit-symbol (priority)

-
-

(quote)

gtart of a character- or
: string-denotation

%

+ =L D>/ "

start of an operator

start of an operator,

or is-defined-ag-symbol

(colon)

label- or colon- or ug-to; or
routine-symbol, or start of becomes-
or 1s- or ?anf—sxgbol

(stick)

brief-then/i else/out-symbol or
s8tart of brief-elseif/ouse-gymbol

g (
s ;3 @

)
L]

various NOTION-symbols

incorrect characters at this level

Spaces and newlines are of no significance at this level.

Logical-end-of-text might be treated as a fault, as Algol 68
particular-programs are supposed to be well-closed,

AB41 p.50

2 Algorithm

This is presented in an "upper stropped" representation of
Algol 68, except that, as in RR10, there are certain particular
constructe whose precise forms are left to the diecretion of
implementors: these are informally described by "pseudo-comments"
which are bounded by the marks C ... C .

The algoritim is given in two parts:

the receognizer grocedure, called "get word"

and (preceding "get word")

declarations necessary to create the environment for "get word".

Two details of the algorithm should be particularly noted,

Onder "res" stropping it may be found that a reserved bold-word
follows a tag, This possibility must be resolved during one
activation of the recogniger: the tag is delivered and the
- reserved bold word is held in a (non-local) varisble until it
(and no subsequent word) is delivered on the next activation of
the recognizer,

Certailn concatenations of charascters starting with DOP-symbols

are ambiguous until more Information about the context 1s known
(which the recognizer in itself cannot provide). In concatenatione
such a8 <=, <{=:=, the final "=" might be part of the

operator or a separete is-defined-as-symbol, The latter is the
case if it is a defining occurrence of %ﬁe operator (i.e, in an
operation-definition or a priority-definition and the next "word"
18 not also "=", All these guous concatenations are split

into two words by the algorithm,

AB41 p.51

{2l1 Invironment}

COMMENT

The followlng declarations are to be made ln ranges
embracing the declaration of the recognizer procedure
: 1: Forms dealing with character classification, cf HR C6
COMMENT ’

INT upletter = max abs chaf + 1,
adigit. = max abs char + 2,
another = max abs char + 3 ;

[: JINT chartype

C A row of integers with bounds [0 : max abs char] ,
having the property #implementation-dependent#

chartypel1i] =
IF REPR 1 1s neither a letter nor a digit
THEN another :
ELIF REPR 1 1s a digit
THEN adigit
ELIF REPR 1 1s an upper case letter
THEN upletter _
ELSE #(REPR 1 1is a lower case letter)#
ABS the corresponding upper case letter
: FI :
[o]
PROC(REF CHAR)BOOL uletter = {(REF CHAR ¢)BOOL :
' chartype[ABS ¢] = upletter ,

sletter = (REF CHAR ¢)BOOL :
IF INT ti = chartypel[ABS c] ;
: ti {= max abs char
THEN ,
(¢ refers to a lower case
letter, which 1s replaced by
the corresponding upper case
letter) #
¢ := REPR ti ;
TRUE
ELSE
FALSE
FI ;

PROC(REF CHAR)BOOL letter = (REF CHAR c)BOOL : uletter OR sletter K
PROC(CHAR)BOOL digit = (CHAR c¢)EOOL : chartype[ABS c] = adigit ;

nn

STRING emptystring = s
CHAR underscore = "_" , space =" " , quote = """" |

apostrophe = C The denotation of the apostrophe character C ;

AB41 p.52-

COMMENT :
' 2: Forms dealing with reading the 1input text
COMMENT .

REF CHAR char = LOC CHAR := space
#(to hold the character in hand)#,

REF BOOL eol = LOC BUOL := FALSE #(see below)# ;
PROC§REF CHAR)VOID get next character

= (REF CHAR ch)VOID _
: C .
~ A routine which reads the next available character from:the
input text and assligns it to c¢h

and perhaps also transcribes the input text to a listing

into which warnlng and fault messages etc may be
interpolated)).

Event routlnes for whichever flle 1s currently accessing the
* dnput text should behave as follows :-

(a) On logical file end - resort to the operating-system,
which may either (if commanded and able to)
mend the flle so. that reading can continue from
another input text (book)
and make eol (see above) := TRUE ,
or abort the run ;

ﬁb; On page end - call newpage and make eol := TRUE ;

] On 1line end - call newline and make eol := TRUE

#(hence 1f an event occurs and 1s cleared,

eol = TRUE and the character from the next good position
is assigned to ch)#

€ :

#("point" stropping willl be the default regime;
Stropping regilmes are switched by pragmats, see HR3.5)#

REF BOOL upperstrop = LOC BOOL := FALSE ,
: resstrop = LOC BOOL := FALSE ;

If the fixed-point-numeral of an INTREAL-denotation is followed
by a point, 1t 1s necessary to look ahead to see 1f the point is
followed by a letter, in which case INTREAL- 1s integer- and the
point must be deemed to be the strop for a following bold-word #

REF BOOL 1intpointletter = LOC BOOL := FALSE

3

AB41 p.53

COMMENT

3: Forms assocliated with information generated by the
recognizer

Each time 1t 1s called the recognlzer generates a "word",
~which 1s a structured value consisting of a string and a
procedure. The procedure will depend on what the word 1s
that has been recognized in the 1nput, and on the use to
which the recognizer 1is beilng put.
The routines to be ascribed to these procedures are
therefore left undefined here; provision 1s made for
these routines to have parameters various 1n numbers and
modes, by proposing that all the "word" procedures have
one parameter whose mode 1s a unlon of a sufficlent set
of modes (left undefined here)

COMMENT

MODE WORDPARAMS = UNION (C of a sufficlent set of modes C) ;

MODE WORD = _
STRUCT (STRING repstring ., PROC(WDRDPARAMS)VDID wordproc) ;

PROC (WORDPARAMS) VIIID
¢ definitions of procedures with the following ldentifilers :-

atproc,' boldbeginproc, Dbiltsmodeproc, .ees..
+c.>. Aand simllarly for all the reserved bold words
sveses unilonproc, voldproc, whileproc,

and

boldtagproc, tagproc, biltsdenproc, badbltsdenproc,
intdenproc, realdenproc, badrealdenproc, chardenproc,
stringdenproc, estringdenproc, tadproc, taoproc,
badtaoproc, equalsproc, colonproc, becomesproc,
badisntproc, briefthinelseoutproc, briefelifouseproc,
hashcommentproc, formatterproc, lparenproc, rparenproc,
andalsoproc, goonproc, briefsubproc, briefbusproc,

badcharproc
c
COMMENT

In two instances (as will be seen) the recognizer has to
look one word ahead in the 1nput text
COMMENT

REF BOOL word held

LOC BOOL := FALSE ,
REF WORD held word ,

LOC WORD ;

I}

AB41 p.54

{g_g‘ Recogniger Rout;gg}

PROC (REF WORD) VOID get word
= (REF WORD w) VOID
HE w>2= | |
IF word held

" THEN .
word held := FALSE ;
held word '

ELSE

read and ignore any typographical features
preceding a word # _

WHILE char = space
DO get next_character (char) 0D ;
eol := FALSE ; :

IF ##

BOOL ul ulettprgcharg
11 sletter{char
dgt = digit(nhaw)
pt = char = ",
only one of these can be TRUE # ;

]

IF pt THEN get next character (char) FI ;

BOOL ptsameline = pt AND NOT eol
: OR intpointletter ;
intpointletter . := FALSE ;

BOOL pul = ptsameline AND uletterécharg ,
pll = ptsameline AND sletter(char
pdgt = ptsameline AND digit(char)

and only one of these can be TRUE # ;

o

2

pt AND NOT(pul OR pll OR pdgt)
THEN #1# |
C emit a fault message (impermissible character) C ;
("." , badcharproc)
ELIF ##

ul OR 11 OR pul OR pll

AB41 p.55

THEN #1#
a bold word or a tag

- PROC 2PRDC VOID) VOID break in tag
PROC VOID p) VOID

H WHILE
‘ BOOL: le = eol
eol := FALSE
BOOI, u = char = underscore ;
IF u

THEN C emit a warning
(unwanted underscore in tag) C
FI
IF u OR char = space
THEN get next character (char) ;
TRUE
ELSE le
FI
DO P oD H

BOOL pointstrop = NOT (upperstrop OR resstrop) ;
IF #e# | |

'pointsb:op AND NDT ptt JR upperstrop AND 11
THEN #2# |

a tag (fbr tags under resstrop see later)

PROC gPRDCEREF'CHAR;BDDL) WORD tagscanner

= (PROC(REF CHAR)BOOI charbool) WORD
ot BEGIN
REF STRING tagstring = LOC STRING
:= char ;
WHILE

get next character (char) ;
IF NOT eol
AND char = underscore
THEN get next character (chan)
FI ;
break in tag (VOID:SKIP) ; .
one underscore is allowed
after each taggle,
newlines and spaces between
taggles are immaterial #
charbool (char)
DO
tagstring PLUSAB char
ap

(tagstring, tagproc)
END ;

AB41 p.56

IF
upperstrop
THEN . ‘
" tagscanner ((REF CHAR chOUL
_ : sletter(c) OR digitic))
ELSE
tagscanner ((REF CHAR c¢)BOOL
: letter(c) OR digit(e))

FI
ELSE #2#

a bold word if pointstrop or upperstrop,
either (or both) if resstrop #

= (STRING charstring, REF WORD rword,) ROOL
: BEGIN
tests 1f charstring matches any
reserved bold word #
[: IWORD restable _
- = "AT" , atproc),
"BEGIN", boldbeginproc),
"BITS" , bitsmodeproc),
C essse and so on
for all the reservad
bold words
oD e e RO 2 - 9 - c
:UNIow", unionproc
"VDID "t voidproc s
WHILE", whilleproc)

PROC éSTRING, REF WORD) BOCL matchres

-

[: JSTRING resstrings
= repstring OF restable ;
. INT top = UPB resstrings ;
STRING firstres = resstrings{1]
lastres = nesstrings[topj ;
REF BOOL, found = LOC BOMJL ::= TFALSE

IF

: charstring>=firstres
AND :
charstring{=lastres

THEN
REF INT 1 = LOC INT ;

IF found := charstring lrstres
THEN 1 :- 1

ELIF found :: charstring lastres
THEN 1 :- top

AB41 p.57

ELSE
seek a match by binary chop
LOC INT

"“REF INT s

1]

‘ , (top + 1) OVER 2 ;
1 = 83 '
WHILE)
STRING entry = resstrings[1] ;
NOT {found := charstring=entry)

AND 8 > 1

g := (8 + 1) QVER 2 ;
IF charstring < entry
THEN 1 MINUSAB s

ELSE 1 PLUSAB s

FI
oD
FI
IF found ,
THEN rword := restable[1]
FI
FI ;
. féund
END 3
IF C#3#
pt OR. upperstrop AND ul
THEN #3#
PROC éPRocénEF CHAR;BDOL) WORD boldscamner
= (PROC(REF CHAR)BOOL charbool) WORD
: BEGIN
REF STRING boldstring = LOC STRING
‘ ¢= char ;
WHILE

get next character (char) ;
NOT eol AND charbool{char)
boldstring PLUSAB char
. oD H
IF
REF WORD rbw = ILOC WORD
matchres(boldstring, rbw)
THEN
: rbw
ELSE
(boldstring, boldtagproc)
FI

END H

»
3

AB41 p.58

- IF
upperstrop
THEN
IF ul OR pul
THEN
boldscanner ((REF CHAR chODL
: uletter(c
OR digit(e)
ELSE :
#polnt followed by lower case#
boldscanner ((REF CHAR c;BOOL
: sletter(c
OR digit(c))
FI
ELSE :
boldscanner ((REF CHAR c)BOOL
: letter(c) OR digit(e)
. FI
ELSE #3#

resstrop and word does not
begin with a point #

REF BOOL- tag held = LOC BOOL := FAL3E .,
regposs = LOC BOOL := TRUE ,
resfound = LOC BOOL := PFALSE ;

REF STRING tagstring = LOC STRING

:= emptystring ,

taggle = LOC STRING ;
REF WORD - row = 1O0C WORD
WHILE
taggle := char ;
WHILE '
get next character (char) ;
NOT eol
AND .
(letter(char) OR digit(char))
DO

taggle PLUSAB char
op

AB41 p.59

IF
NOT eol AND char=underscore
- THEN
resposs := FALSE ;
get next character (char)
ELSE
an apparent taggle may be a
reserved bold word if 1t is
bounded by disjunctors and
not adjacent to an underscore #
IF Tesposs
THEN resfound :=
matchres(taggle, rbow)
: FI
FI ;

break in tag (VOID: resposs := TRUE)

1f there are typographical display
features then resposs 1s reset ready
for the next apparent taggle #

- NOT resfound
AND :
(BOOL 1 = letter(char)
regsposs := resposs AND 1 ;
1 OR digit(char)
a taggle may start with a 1etter or
a digit, but every reserved bold
word starts with a letter #

Do o

tag held := TRUE ;
tagstring PLUSAB taggle
oD ;

the input may contain a tag followed by
an obJject recognized firstly as an
apparent taggle and secondly as a
reserved bold word; i.e., two words may
be recognized in one activation of the
recognlzer; alternatively, the first
apparent taggle may or may not be a
reserved bold word #

IF -
tag held
THEN _
. _ IF resfound
) . . THEN
word held := TRUE ;
held word := rbw
FI ; '
(tagstring, tagproc)
ELSE

rbw

FI

AB41 p.60

FI #3#
FI #e#
finished with tags and bold words

ELIF #1#
| dgt OR pdgt
THEN ##

an INTREAL-denotation or a bits-denotation
(or a digit-symbol in a priority-definition) #

REF STRING denstring = LOC STRING :=
IF pdgt THEN "0." ELSE emptystring FI + char ;

PROC VOID get digits
= VOID : WHILE get next character %char; ;
© NOT eol AND digit(char
DO denstring PLUSAB char OD ;

PROC BOOL aletterproc
= BOOL : IF eol
THEN FALSE
ELIF upperstrop
THEN sletter(char)
ELSE 1letter(char)

FI ;
get digits ;
BOOL aletter = aletterproc ;
IF #e#
dgt AND aletter AND éhar = "R"
THEN #2#

a bilts-denotation

denstring PLUSAB "R" ;
REF BOOL radixright = LOC BOOL := TRUE |,
digits = 1LOC BOOL := FALSE ;

[: JCHAR Dbitsdigits
= IF denstring
ELIF denstring

"2R" THEN "O1"
"4R" THEN "0123" «
ELIF denstring = "8R" THEN "01234567"
ELIF denstring = "16R"
THEN "0123456789%abeder"

+

|

IF upperstrop
THEN emptystring
ELSE "ABCDEF"
FI
ELSE radixright := FALSE ;
SKIP
FI

s

AB41 p.61

IP #3# .
radixright
THEN
WHILE
get next character (char) ;
NOT eol
AND :
char in string (char, LOC INT, bitsdigits)
DO
digits := TRUE ;
denstring PLUSAB (sletter(char) ; char)
changes any lower case letters
to upper case
D ;

IF diglts
THEN

ELSE
C emit a fault message
(no digits in bilts-denotation) C ;
(denstring, badbitsdenproc.)

(denstring, bitsdenproc)

FI
ELSE = #3#

' C emit a fault message (wrong radix
in supposed bits-denotation) C ;
WHILE

may maul the next word

get next character (char) ;

NOT eol
AND

(IF upperstrop THEN sletter(char)

ELSE letter(char) FI

OR
- digit(char))
DO

denstring-PLUSAB char
op :

(denstring, badbitsdenproc)
FI #3#

AB41 p.62

ELIF #2#

BOOL intpoint = dgt AND NOT eol AND char ="." ;

BOOL 1intandfracpart = IF intpolnt
THEN
get next character(char) ;
intpointletter :=
letter(char)
NOT intpointletter
ELSE
FALSE
FI
intandexpart - dgt AND aletter
AND char = "E" ;

we

dgt AND NOT(intandfracpart OR intandexpart)
THEN #2# |
an integer-denotation or a digit-symbol
(denstring, intdenproc)
- ELSE #2#
a real-denotation
REF BOOL - fracright = LOC BOOL ;

BOOI, expart = IF pdgt
THEN fracright := TRUE ;
aletter AND char = "E"
ELIF Intandfracpart
THEN IF -fracright := digit(char)
THEN
denstring PLUSAB "."+ char ;
get digits ;
aletterproc AND char = "E"
ELSE
FALSE
FI ‘
ELSE #intandexpart#
denstring PLUSAB ".0" ;
fracright := TRUE

FI ;
IF #3#
expart
THEN #3#

denstring PLUSAB "E" ;

get next character (char) ;

IF char = "+" OR char = "."

THEN denstring PLUSAB char ;
get next character (char)

ELSE denstring PLUSAB "+

FI ;

get digits

FI #3#

AB41 p.63

IF
fracright AND digilt(denstring{UPB denstring])
THEN
(denstring, realdenproc)
integral-part and fractlonal-part
of denstring will contain
at least the digit 0 #
ELSE
C emit a fault message
(111 formed real-denotation) C ;
(denstring, badrealdenproc)
FI |
FI #2o#
ELIF #1#

char = quote
THEN #1#
a character- or string-denotation

PROC VOID eol in string
= VOID : 1IF eol
THEN C emit a warning # see HR CU4 #
(string-denotation
broken by end of line)
eol := FALSE
FI ;

1Q
e

REF STRING denstring = LOC STRING := emptystring ;

AB41 p.64 .

WHILE

get next character (char) ;
eol in string ;

IF char = apostrophe
THEN
get next character {(char) ;
eol in string ;
IF char # apostrophe
THEN C # see HR A3.1 # a routine to deal
with the situation where a single
apostrophe 1n a string-denotation
is used as an escape character,
otherwise a fault condition
(two apostraphes form
the apostrophe-image) #
FI ;
TRUE
ELIF char = quote
THEN _
get next character (char) ;
IF NOT eol AND char = quote
THEN # quote-image #
TRUE :
ELSE WHILE char = space
DO get next character (char) OD
eol := FALSE ;
IF char = quote
THEN # string-break, see HR 3,1 #
get next character (char) ;
TRUE
ELSE # end of string #
FALSE
FI
FI
ELSE
TRUE
FI

DO .
denstring PLUSAB char
oD ,
CASE 1 + UPB denstring

IN (emptystring, estringdenproc)
s denstring, chardenproc

OUT (denstring, stringdenproc)
ESAC

{9}

AB41 p.65

ELIF #1#

REF INT dyadnum = LOC INT ;
char in string (char, dyadnum, "&+-<{=>/*")

THEN #1#

DOP-BECOMESETY-symbol (operator)
and/or 1s-defined-as-symbol #

PROC (WORDPARAMS) VOID opproc
= IF dyadnum <{= 3
- THEN taoproc # operator could be monadic #
ELSE tadproc # operator must be dyadic #

FI
REF STRING opstring = LOC STRING = char ;
get next character %char) ;
BOOL colon2 = char = ":" , equals? = char = "=" ;
IF #of
eol
OR _ _
NOT
(colon2 OR char in string(char, LOC INT, "{=>/*"))
THEN #2#
one character only e.g. "#$" or "="

(opstring, IF opstring = "=" THEN equalsproc
ELSE opproc FI)

ELIF #2#

PROC WORD colonequals
= WORD : 1IF . .
opstring PLUSAB ":" ;
get next character (char) ;
eol OR char £ "="
THEN
C emit a fault message
(111 formed operator) ¢ ;
(opstring, badtaoproc)

ELSE
) _ opstring PLUSAB "=" ;
v et next character (char) ;
opstring, opproc)
FI ;

c¢olon?2

AB41 p.66

THEN #2#

ELSE

colonequals # e.g. "#:=" #
#o#

second character not ":"

opstring PLUSAB char ;
get next character (char) ;

BOOL
IF

THEN

ELIF

THEN

ELIF

THEN

colon3 = char = ":" , equals3 = char =

#3#
eol OR NOT(colon3 OR equals3)
#3#

IF .

equals?2 # n.b. second character #
THEN

have we a DYAD-cum-equals symbol

€.Ze
or

DYAD-symbol, ls-deflned-as-symbol
Asgume the second, think again when
the context 1s determined

word held
held word

(opstringl1] , oppré
ELSE

FI
#3#

equals2 AND 001053 # e.gs "B=:" #
#3#

opstring PLUSAB ":"
get next character (char) ;
IF char = "=
THEN # Assume DYAD-cum-assligns- to-symbol
is-defined-as-symbol
word held := TRUE ;
held word := ("=" , equalsproc)
FI
(opstring, opproc)

#3#

colon3l

#3#
colonequals # e.g. "#{:=" #

TRUE

o

equalsproc)

(opstring, opproc) # e.g. "¥" #

w_n

?

.
’

/

AB41 p,.67

ELSE #3#

opstring PLUSAB "="
get next char'acter' (char) ;
IF .
eol OR char # ":"
THEN ‘
DYAD-cum-NOMAD-symbol,
is-defined-as symbol

e.g. "#",
word held := TRUE ;
held word := ("=", equalsproc)
(opstringl{1:2], opproc
ELSE
DYAD»cum-NOMAD-cum-assigns to-symbol,
e.g. = #

opstring PLUSAB ":" ;
et next character (char) ;
% opstring, opproc)

FI
FI #3# |
FI #o#
ELIF ##
char = ":"
THEN #1#
get next character (char) ;
BOOL eq = char = "=" , sglash = char = "/" ;
IF #2#
eol OR NOT(eq OR slash)
THEN . #2#
(":", colonproc)
ELIF #2#
eq
' THEN #o#
get next character (char) ;
. eol OR char # ":"
THEN '
("e=", becomesproc)
ELSE

et next character (char) ;
% ':=:" , 1isproc
FI

AB41 p.68

ELSE #o#
get next character (char) ;
IF
eol OR char # "="
THEN
C emit a fault message
(111 formed isnt-symbol) C ;
(":/" , Dvadisntproc)
ELSE :
get next character (char)
IF
eol OR char £ ":"
THEN
c emit a fault message
(111 formed iant-symbol) C ;
":/=" , badisntproc
ELSE
get next character (char) ;
(":/=:", d4sntproc
FI
FI
FI #2#
ELIF ##
Ch&l" = ll‘"
THEN #1#

get next character (char) ;

IF
" eol OR char £ ":"
THEN
("|" , briefthinelseoutproc)
ELSE

ret next character (char) ;
%e R briefelifouseproc
FI

AB41 p.69

ELIF #1#
 REF INT 1 = 1OC INT ;

char in string (char, 1, "#$(),;@1")
THEN #1#

get next character (char)
[: Jworp ((""

fan
n %]

")ﬂ

hashcommentproc
formatterproc
lparenproc
rparenproc
andalsoproc
goonproc

atproc
briefsubproc
briefbusproc) [1]

n’a
"in
ug n
njn

Y W W W v v W W e
- W W WM M e e e

ELSE #1#
C emit a fault message
(impermissible character) C ;
CHAR ¢ = char ;
get next character (char) ;
(¢, badcharproc)
FI #1#

FI

COMMENT end of PROC get word COMMENT

COMMENT end of token-recognizer algorithm COMMENT

AB41 p.70

Appendix : Reserved Bold Words

(The algorithm assumes a well-behaved letter collating sequence)

AT, BEGIN, BITS, BOOL, BY, BYTES, CASE, CHANNEL, CHAR, CO,
COMMENT, COMPL, DO, ELIF, ELSE, EMPTY, END, BSAC, EXIT, FALSE,
FI, FILE, FLEX, FOR, FORMAT, FRON, GO, GOTO, HEAP, IF, IN, INT,
IS, ISNT, LOC, LONG, MODE, NIL, OD, OF, OP, OUSE, OUT, PAR, PR,
PRAGMAT, PRIO, PROC, REAL, REP, SEMA, SHORT, SKIP, STRING,
STRUCT, THEN, TO, TRUE, UNION, VOID, WHILE

(Total : 61)

Epilogue

The author will be pleased to hear from anyone who has gqueries
or finds mistakes, and will undertake to inform the Algol
Bulletin and any Individual correspondents of necessary
amendments, Enquiries about the analogous Algol 68R program
are also invited,

Pleass write to:

Mr, R, Bell,

Department of Computer Science,
Teesside Polytechnic,

Borough Road,

Middlesbrough,

Cleveland,

TS1 3BA,

England,

AB41 p.71

0

uorjerrdwossead ej

A0TI33633W QY
exeTsbuty . °y

Fejuny *gey

. eyl
seqebetep Aq peT

(LL6T eung ‘g Iequny ZT 8wnTop ©83T30N Ny1dIIS

'gessed gz

T1 dQd I04 IeTTdwod s801]

Lg WBI 304 SMANYC seonpodd

6praquwes woly pejiodsuel]

eyedes sntd g9 1097y TINd

Syaewsy

7ddns sem uoTjEWIOSUT 8Y]

*038

0062
006T 131 y89Y LLLBT 9L6T
3esqns 89y °Z

0c avIy | oxoew waI °T LLET| TL/TLET
006T ¥e9y | 6/8/LL6T 9L6T
0Le wael m 1097 | 6/8L6T yL6T
Ovy HL - 289Y LLET 9L6T

dyd

11/0T dad

0£Ty 131
oLg/09e Wel J89Y. LLET| OLET~
0.8 Wal Z1a3 ¢8L6T vL6T
uo suny ut ueljTIM. s3jeqd e3eq
ysTutd{ 3Ie3§

uIentey
*3°y°s*y

A3TsIantufn
peabutua

Em:mcwuuoz Jo
A3TsaenTufn

wepiejswy
eaIjue]
TeoT3BWaY3EY

wnyoog
A3T8IenTUn Iyny

mmnﬂnnswu 40
A3TsIBATUR

urTisg
A3Tsaentuf
TeoTuUYyasj

U0T3E5TUebag

TE 38
8TIINg °*4°1I

1B 38

noyyeas)
uTt3zhes]

330Uy QY

woog °H

Auey

LaeqTem °I
Aeusy) °C°2
11eaatg *g*y
Ang c1°C*W
suxnog °g

18 38 BI@38(Q
Yooy

52043 ny

S4B9Y

avyIy/8sy

N8oY

HB9Y

J89Y

389y

a89y
ebenbue|

LLET Aey

pueT3095 ‘mobBselg ¢epAToy3zel3s J0 A3TSIBNTU(

g9 1097y 40 uoTjejuBWETdWT eyj UT pejselsjul esoy3 03 eTqeTrene

3T exjew 03 uwmnmaca ucmﬂuwmm:m 40 3T 3ybnoyy 3NQ UDT}BWIOJUT 8Y3 JO Aoeansoe ey3 eejuerend j0uued 8I048I8U] saesTuebIo eoueIsjuod
*80UBIB4UOD B8y} 3B jueseld 30U B8I8M SOATaswsyj SI83TIM IzeTTdwoo 8y3 elsym S6SBO 8Y3} UT PUBY PUDDBS 3UBIXS8 BWOS 03 ST pue

+szeTTdWoo gg 091y JO Iequnu B JO sn3e3ys eyz uo peasy3eb sem uorjewzojgur ButmMOTTO4 BY3

§Ie17duo] g9 1091y 8wos

) 8pATOy3BI3S 40 A3TSIBATUM BY3 UT PTBY eouslsjuol g9 70ITY JuUSIBT 8y Butang

9* 9° 174V
1L°d TvAV

uotjerrdwoo ejeaedeg
abenbueT pestnex TTNJ

AB41 p.72

wsTTeTTRIERd O
AIen0083 10138 I00d
0/1 e1dutg

abenbuet TTIN4
juspusdeput suTtyae|

sessed jo zequnu
eTgeTIen Q06T woxs deazsjoog

8TqeTTenE Oppyl 104 I03BTNWI

. sS118
S,PIBQQTH °d 40 UOT3RIS}TTSURIL

S3IYH3s
04 H38AJ

S0-SW3/dd
09¢ Wal

‘SNOTIEN

SNW¢= 006T 131

0g/09¢ wal

12-18

2.l d38A0

11/0T dad

0Lg war.

1 zeTnpOY

SS5vdwWod
+ 37dWIS

- 09g d
+ wWweysAs

(1)1 + 100

-Hd3v

702 + 8oy
aeTquessy 0gg

SYX31L

yasvd

Ss1T8

09g/Ad

nmﬂnsmwm<
1 aeTnpoy

9.6T

penuTjuoo
q0u
9L6T

1861

fa)

¢Let

PASTAN

LL6T

9.L61
9l6t

évL6T

2461

ZL6T

ZL6T

TL61
TL6T
46961

9461

GL6T

[0

(438A2)
aa3d

eTqousiy Jo
A3Tsaentun

wepJejsuy
813u89
TeoT3RWeYRY

Isjseyaouey 4O
A31saentun

sTessnag
Awepeoy
A283TTTW TBAOY

yoTuny 4o
AjTsaentun
TeoTUYOB]

Is388YoUuB) 40
A3TsIsnTun

ybangsy3td.

A3T8I8ATUN

uotTew
-atbeuse)

Emcn:o.mo
A31saentun

Too0dasnt 4O
A3T8IBNTUN

ButayotTIyos
wice

uoITop
38UOUTS
AeuneTeq
uTung

Auep)
182 39
Aesput *H°J

suadlTy °y
sTNO7 Ang

1e 36

Zsussof
TITTH

Aesput *H°Q

pIeqqTH °*d
ozuny W

pIeqqTH °d

89v

89y

89y

89y

67/89Y

WnLegy

S8ov

sB9v
S89Y

Se9y

3esqns butyses)

X813 ON

8sn salojeq \aIeToeq

ssed auq

((t)71) a1s sesn

+q3x0day pesTney 03 eTqrssod se 8s0To Sy

AB41 p.73

-

sassed g

08 SIHI
0.00T II3
Y1831

08 SIul

0L00T II3

006T 131

006T 131

XXTT JUNINN

0L d1

0L d1

H89Y

489y

A Nwdlyod

9L61

9L6T

9.L61

O

GL61

LL6T
vL6T1

eL6T

sesuuey JO
A3Tsaentun

anbead

seuusy 4o
A3Tszentuf

weybut3jonN 40
AgqTsaentun

Moasy9
8pAToyzeass 4o
A3Ts3enTu

IX staed 4o
A3Tsaentuf

SUNJ

1e 38
833848Td

TeaHy

18 38

aljaueg

uebaoy °rC°q
30Ta33830W *aQ°V

axersbury °y
Iejuny *g°y

urdne| °*g

vYH3S

89v

gov

89y

89y

89y

AB41.5.1

AB41.5.2

Errata

The following errata appeared in the published
version of ‘A Supplement to the ALGOL 60
Revizsgg Report’ (The Computer Journal), Vol, 19,
276-288.

1. Page 277, col 1, line 12: *Level (IFIP)’ should read ‘Level 3(IFIP)’.

2. Page 280, section 4.2.4: ‘entier (E + 0-5)° should read ‘entier

(E + 0-5) where E is the value of the expression’.

3. Page 282, section 4.7.5.5: ‘Add to this section’ should read
‘Replace this section by’.

4, Page 282, section 4.7.5.5: After ‘string identifier’ the following
should appear (starting on a new line) ‘If the actual parameter is
itself a formal parameter the correspondence (as in the above
table) must be with the specification of the immediate actual
parameter rather than with the declaration of the ultimate actual
parameter’.

5. Page 283, section 5.4.2: After the first sentence the following
should appear: ‘In procedure Absmax insert ‘‘value n, m,” before
the specifications of formal parameters. After ‘y := 0;’ insert
Gri=k:i= 1770 :

6. Page 283, scction 5.4.4: There should be no comma following ‘If
a function designator’.

Errata to the Revised Report 15 Mar 1977

AB41 p.74

The following corrections should be made to the Revised Report on the Algorithmic

Language ALGOL 68, as published in the following editions:
Acta Informatica, Vol. 5, pts 1, 2 and 3, Dec 1975.
Springer-Verlag, 1976.

Mathematical Centre Tracts 50, Mathematisch Centrum, Amsterdam, 1976.

Misprints

p.108 8.0.1.a+2 # (94d) =>

p.110 8.1.4.1.d #item => item’
p.116 9.3.c +5 # BEGIN => BEGIN,
p.118 9.4.1.b+13 #o =4
p.132.10.2.3.4.a #a) => a)

p.173 10.3.4.1.1.A -4 remove spurious line

p.194 10.3.5.h +15 #0k =>(f))
p.196 10.3.5.1.a"editL real’ -2 #L0O =>L0
p.197 10.3.5.1.a"editL compl' -8 #a; =>a);
p.199 10.3.5.1.a "gpattern” +13 #Linti): i1, Lreal r): => (L Inti): &, {(L realr):
p-201 10.3.5.2.a+3 #in = x[k]in
p.207 10.3.6.2.a "case y[jI' +1 #from = (from

10.3.6.2.a"case y[j1'+9 #from => (from

It L I X

I I T w !

